

Lecture Notes in Bioinformatics 4751
Edited by S. Istrail, P. Pevzner, and M. Waterman

Editorial Board: A. Apostolico S. Brunak M. Gelfand
T. Lengauer S. Miyano G. Myers M.-F. Sagot D. Sankoff
R. Shamir T. Speed M. Vingron W. Wong

Subseries of Lecture Notes in Computer Science

Glenn Tesler Dannie Durand (Eds.)

Comparative
Genomics

International Workshop, RECOMB-CG 2007
San Diego, CA, USA, September 16-18, 2007
Proceedings

13

Series Editors

Sorin Istrail, Brown University, Providence, RI, USA
Pavel Pevzner, University of California, San Diego, CA, USA
Michael Waterman, University of Southern California, Los Angeles, CA, USA

Volume Editors

Glenn Tesler
University of California, San Diego
Department of Mathematics
9500 Gilman Drive, La Jolla California 92093-0112, USA
E-mail: gptesler@math.ucsd.edu

Dannie Durand
Carnegie Mellon University
Departments of Biological Sciences and Computer Science
Pittsburgh, PA 15213, USA
E-mail: durand@cmu.edu

Library of Congress Control Number: 2007934768

CR Subject Classification (1998): F.2, G.3, E.1, H.2.8, J.3

LNCS Sublibrary: SL 8 – Bioinformatics

ISSN 0302-9743
ISBN-10 3-540-74959-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74959-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12124237 06/3180 5 4 3 2 1 0

Preface

The wealth of genomic data available today is a potential goldmine for basic re-
search and economic development in the biomedical sciences. Comparison of re-
lated genomes offers enormous inferential power, revealing a wealth of knowledge
about genome evolution, genetic function, and cellular processes. Recognition of
this fact has spurred efforts to sequence a range of closely related primate and
mammalian genomes, as well as concerted efforts to sequence multiple genomes
in the yeast, Drosophila, and nematode lineages. Computational strategies to
interpret and exploit these data are essential in order to realize the full value of
these growing scientific resource. The annual RECOMB Satellite Workshop on
Comparative Genomics (RECOMB-CG) is an interdisciplinary forum on all as-
pects of genome comparison, ranging from quantitative discoveries about genome
structure to algorithms for comparative inference to theorems on the complexity
of computational problems required for genome comparison.

This volume contains the papers presented at the Fifth Annual RECOMB
Satellite Workshop on Comparative Genomics held September 16–18, 2007 in La
Jolla, at the University of California, San Diego. Eighteen papers were submitted,
of which the Program Committee selected 14 for presentation at the meeting
and inclusion in these proceedings. Each submission was reviewed by at least
three members of the Program Committee. The program also included a lively
poster session. A session of short talks presenting late-breaking results, selected
a few weeks before the meeting from the submitted poster abstracts, provided
an opportunity to hear about provocative results from works in progress. In
addition to contributed presentations, we were honored by plenary talks given
by the invited speakers: Francesca Ciccarelli (European Institute of Oncology),
Michael B. Eisen (University of California, Berkeley), Matthew Hahn (Indiana
University), Katherine S. Pollard (University of California, Davis), Oliver A.
Ryder (Zoological Society of San Diego), and Ajit Varki (University of California,
San Diego). This year the meeting was held jointly with the new RECOMB
Satellite Workshop on Computational Cancer Biology (RECOMB-CCB), and
included a joint keynote address by Barbara J. Trask (Fred Hutchinson Cancer
Research Center), sponsored by the law firm of Morrison & Foerster, LLP.

RECOMB-CG presentations focus on emerging problems, data, and tech-
nologies. This year’s invited talks gave particular attention to the evolution of
primate genomes and the use of comparative methods for identifying genomic
novelties that make us uniquely human. Whole-genome approaches to species
tree reconstruction were a dominant theme among the contributed papers. In
contrast to the frequently misleading practice of inferring a species tree from a
single gene family, comparative genomics research is spawning approaches for
deriving phylogenetic signal from entire genomes. Whole-genome methods dis-
cussed at RECOMB-CG 2007 included analysis of conserved intron positions

VI Preface

and gene order conservation. Another emerging theme was gene duplication.
Some papers investigated the role of gene duplication in the evolution of ge-
netic novelties. Other work viewed duplications as a form of uncertainty and
proposed methods to address this source of noise in reconstruction of genome
rearrangements. A third research thrust discussed at the meeting focussed on
novel approaches to inferring ancestral character states, and genome rearrange-
ment distances and phylogenies. Finally, presentations on gene family evolution,
as well as the use of comparative methods in inferring regulatory motifs and
networks, complemented results on large-scale, spatial genomics.

RECOMB-CG 2007 is indebted to the many individuals and organizations
who contributed their support, dedication, and hard work. The Steering Com-
mittee supported us in all aspects of the meeting. The success of the meeting de-
pends critically on the efforts of the Program Committee and their sub-reviewers.
Their good judgment and constructive criticism engendered an exciting and
high-quality scientific program. Paper and poster submission and selection were
managed through the EasyChair Web site. We express our appreciation to An-
drei Voronkov for providing this system. We are especially grateful to Anita Mc-
Kee, Jennifer Zimmerman, and Doug Ramsey at UCSD and Annette McLeod
at Carnegie Mellon University for administrative support. RECOMB-CG 2007
thanks the law firm Morrison & Foerster, LLP; the National Science Foundation;
the University of California’s Industry-University Cooperative Research Pro-
gram; and the University of California, San Diego (UCSD) for financial support
and UCSD and the California Institute for Telecommunications and Information
Technology (Calit2) for hosting the conference.

Most important, we thank the invited speakers, the scientists who submit-
ted papers and posters, the conference attendees, and the committee members
and student volunteers who helped to make this meeting possible. It is the con-
tribution of these individuals that makes RECOMB-CG an exciting scientific
event.

September 2007 Glenn Tesler
Dannie Durand

Conference Organization

Program Committee Chairs

Glenn Tesler (University of California, San Diego, USA)
Dannie Durand (Carnegie Mellon University, USA)

Program Committee

Lars Arvestad (Kungliga Tekniska Högskolan, Sweden)
Vineet Bafna (University of California, San Diego, USA)
Serafim Batzoglou (Stanford University, USA)
Anne Bergeron (Université du Québec à Montréal, Canada)
Mathieu Blanchette (McGill University, Montreal, Canada)
Guillaume Bourque (Genome Institute of Singapore, Singapore)
David Bryant (The University of Auckland, New Zealand)
Jeremy Buhler (Washington University in St. Louis, USA)
Sourav Chatterji (University of California, Berkeley, USA)
Cedric Chauve (Université du Québec à Montréal, Canada)
Avril Coghlan (Wellcome Trust Sanger Institute, UK)
Miklos Csuros (University of Montreal, Canada)
Aaron Darling (University of Queensland, Australia)
Nadia El-Mabrouk (University of Montreal, Canada)
Niklas Eriksen (Chalmers University of Technology, Sweden)
Steffen Heber (North Carolina State University, USA)
Daniel Huson (Eberhard Karls Universität, Tübingen, Germany)
Tao Jiang (University of California, Riverside, USA)
Jens Lagergren (Kungliga Tekniska Högskolan, Sweden)
Aoife McLysaght (Trinity College, University of Dublin, Ireland)
Laxmi Parida (New York University and IBM, USA)
Marie-France Sagot (INRIA, France)
David Sankoff (University of Ottawa, Canada)
Marie Sémon (Université Claude Bernard Lyon 1, France)
Joao Setubal (Virginia Tech, USA)
Jens Stoye (Universität Bielefeld, Germany)
Haixu Tang (Indiana University, USA)
Eric Tannier (INRIA Rhône-Alpes, France)
Tiffani Williams (Texas A & M, USA)
Stacia Wyman (Fred Hutchinson Cancer Research Center, USA)
Liqing Zhang (Virginia Tech, USA)
Louxin Zhang (National University of Singapore, Singapore)
Yves van de Peer (Ghent University, Belgium)

VIII Organization

External Reviewers

Laurent Gueguen (Université Claude Bernard Lyon 1, France)
Katharina Jahn (Universität Bielefeld, Germany)
Åsa Pérez-Bercoff (Trinity College, University of Dublin, Ireland)
Roland Wittler (Universität Bielefeld, Germany)
Chunfang Zheng (University of Ottawa, Canada)

Local Organizing Committee

Glenn Tesler (University of California, San Diego, USA)
Mark Chaisson (University of California, San Diego, USA)
Qian Peng (University of California, San Diego, USA)

Steering Committee

Jens Lagergren (Kungliga Tekniska Högskolan, Sweden)
Aoife McLysaght (Trinity College, University of Dublin, Ireland)
David Sankoff (University of Ottawa, Canada)

Sponsors

Morrison & Foerster, LLP (www.mofo.com)
National Science Foundation (www.nsf.gov)
Opportunity Award from the Industry-University Cooperative Research

Program (www.ucdiscoverygrant.org)
Division of Physical Sciences, University of California, San Diego

(physicalsciences.ucsd.edu)
Center for Algorithmic and Systems Biology, University of California,

San Diego (casb.ucsd.edu)
California Institute for Telecommunications and Information

Technologie (www.calitz.net)

Previous Meetings in This Series

1st RECOMB Satellite Workshop on Comparative Genomics
October 20–24, 2003
Institute for Mathematics and Its Applications (IMA), University of Minnesota,

Minneapolis, USA
Program Chairs: Jens Lagergren (Stockholm Bioinformatics Centre, KTH,

Sweden), Bernard Moret (University of New Mexico, USA), and David Sankoff
(University of Ottawa, Canada)

2nd RECOMB Satellite Workshop on Comparative Genomics
October 16–19, 2004
Bertinoro International Center for Informatics, University of Bologna, Italy
Program Chairs: Jens Lagergren (Stockholm Bioinformatics Centre, KTH,

Sweden), Aoife McLysaght (Trinity College, Ireland) and David Sankoff
(University of Ottawa, Canada)

3rd RECOMB Satellite Workshop on Comparative Genomics
September 18–20, 2005
Trinity College, University of Dublin, Ireland
Program Chairs: Aoife McLysaght (Trinity College Dublin, Ireland) and Daniel

Huson (Eberhard Karls Universität, Tübingen, Germany)

4th RECOMB Satellite Workshop on Comparative Genomics
September 24–26, 2006
University of Montreal, Quebec, Canada
Program Chairs: Nadia El-Mabrouk (University of Montreal, Canada) and

Guillaume Bourque (Genome Institute of Singapore, Singapore)

Table of Contents

Multi-break Rearrangements: From Circular to Linear Genomes 1
Max A. Alekseyev

A Pseudo-boolean Programming Approach for Computing the
Breakpoint Distance Between Two Genomes with Duplicate Genes 16

Sébastien Angibaud, Guillaume Fertin, Irena Rusu,
Annelyse Thévenin, and Stéphane Vialette

Improving Inversion Median Computation Using Commuting Reversals
and Cycle Information . 30

William Arndt and Jijun Tang

Inferring a Duplication, Speciation and Loss History from a Gene
Tree (Extended Abstract) . 45

Cedric Chauve, Jean-Philippe Doyon, and Nadia El-Mabrouk

How to Achieve an Equivalent Simple Permutation in Linear Time 58
Simon Gog and Martin Bader

Baculovirus Phylogeny Based on Genome Rearrangements 69
Daniel Goodman, Noah Ollikainen, and Chris Sholley

Learning Gene Regulatory Networks via Globally Regularized Risk
Minimization . 83

Yuhong Guo and Dale Schuurmans

Evolution of Tandemly Arrayed Genes in Multiple Species 96
Mathieu Lajoie, Denis Bertrand, and Nadia El-Mabrouk

Selecting Genomes for Reconstruction of Ancestral Genomes 110
Guoliang Li, Jian Ma, and Louxin Zhang

A Heuristic Algorithm for Reconstructing Ancestral Gene Orders with
Duplications . 122

Jian Ma, Aakrosh Ratan, Louxin Zhang, Webb Miller, and
David Haussler

Reconstructing an Inversion History in the Anopheles Gambiae
Complex . 136

Ai Xia, Maria V. Sharakhova, and Igor V. Sharakhov

Recovering True Rearrangement Events on Phylogenetic Trees 149
Hao Zhao and Guillaume Bourque

XII Table of Contents

Parts of the Problem of Polyploids in Rearrangement Phylogeny 162
Chunfang Zheng, Qian Zhu, and David Sankoff

A Rigorous Analysis of the Pattern of Intron Conservation Supports
the Coelomata Clade of Animals . 177

Jie Zheng, Igor B. Rogozin, Eugene V. Koonin, and
Teresa M. Przytycka

Author Index . 193

Multi-break Rearrangements:

From Circular to Linear Genomes

Max A. Alekseyev

Department of Computer Science and Engineering
University of California at San Diego, USA

maxal@cs.ucsd.edu

Abstract. Multi-break rearrangements break a genome into multiple
fragments and further glue them together in a new order. While 2-
break rearrangements represent standard reversals, fusions, fissions, and
translocations operations; 3-break rearrangements are a natural gener-
alization of transpositions and inverted transpositions. Multi-break re-
arrangements in circular genomes were studied in depth in [1] and were
further applied to the analysis of chromosomal evolution in mammalian
genomes [2]. In this paper we extend these results to the more difficult
case of linear genomes. In particular, we give lower bounds for the re-
arrangement distance between linear genomes and use these results to
analyze comparative genomic architecture of mammalian genomes.

1 Introduction

Rearrangements are genomic “earthquakes” that change the chromosomal archi-
tecture. Each of the standard rearrangement operations (i.e., reversal, transloca-
tion, fusion, or fission) can be viewed as making up to 2 breaks in a genome and
gluing the resulting fragments in a certain order. More complex rearrangement
operations such as transpositions1 require 3 breaks. Alekseyev and Pevzner [1]
introduced a generalized k-break rearrangement operation that makes k breaks
in a genomes and glues the resulting fragments in a new order, and studied such
operations in depth in the case of circular genomes (i.e., genomes consisting of
one or more circular chromosomes).

While 2-breaks correspond to the standard rearrangement operations; 3-breaks
add transpositions, 3-way fusions, and 3-way fissions to the set of rearrangement
operations. Although transpositions are believed to be rare (as compared to rever-
sals and translocations) and 3-way fusions/fissions were never described before in
evolutionary context, these complex rearrangements may be involved in chromo-
some aberrations in irradiated genomes [3,4,5,6]. As shown in [7], switching from
transpositions to 3-breaks allows one to attack hard computational problems that
otherwise may be intractable. Another application of multi-break rearrangements
is the analysis of “FBM vs. RBM” controversy in mammalian evolution [2].

1 Throughout this paper transpositions refer to both transpositions and inverted trans-
positions.

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 1–15, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

2 M.A. Alekseyev

The Random Breakage Model (RBM) [8] postulates that rearrangements hap-
pen at “random” genomic positions, resulting in low breakpoint re-use rate. RBM
was criticized by Pevzner and Tesler, 2003 [9]2 who came up with an alterna-
tive Fragile Breakage Model (FBM). The FBM postulates existence of fragile
genomic regions that are more likely to be broken by rearrangements than the
rest of the genome, implying (in contrast to the RBM) high breakpoint re-use
rate. A variety of further studies argued for existence of fragile regions in mam-
malian genomes [12,13,14,15,16,17,18,19,20]. For example, Kikuta et al, 2007 [20]
analyzed the links between genome fragility and the need to keep genome intact
by regulatory elements and came to the conclusion that “the Nadeau and Taylor
hypothesis is not possible for the explanation of synteny in general.” However,
“RBM vs. FBM” question remains controversial fuelled by recent argument [21]
that high breakpoint re-use rate between mammalian genomes maybe caused by
more complex rearrangement operations (like transpositions). This concern was
addressed in [2] for the case of circular genomes but it remains unclear how to
analyze the breakpoint re-use in the more relevant case of linear genomes. While
multi-breaks in linear genomes can be defined similarly to circular genomes, the
linear case is harder to analyze. In contrast to circular genomes, not every multi-
break can be performed over a linear genome: multi-breaks that create circular
chromosomes are not allowed. In this paper we extend the results from [1] and
[2] to the case of linear genomes. The detailed analysis of biological implications
of these results remains beyond the scope of this paper and will be considered
elsewhere.

2 Multi-break Rearrangements in Circular Genomes

We will find it convenient to represent a circular chromosome with genes x1, . . . xn

as a cycle (Fig. 1) composed of n directed labelled edges (corresponding to genes)
and n undirected unlabeled edges (connecting adjacent genes). The directions of
the edges correspond to signs (strand) of the genes. We label the tail and head
of a directed edge xi as xt

i and xh
i respectively. Vertex xt

i is called the obverse of
vertex xh

i , and vice versa. Vertices in a chromosome connected by an undirected
edge are called adjacent. We represent a genome as a collection of disjoint cycles
(chromosomes) with edges of two alternating colors: one color (usually black or
gray) reserved for undirected edges and the other (“obverse”3) color reserved for
directed edges. We do not explicitly show the directions of obverse edges since they
are defined by superscripts “t” and “h” (Fig. 1).

Let P be a genome represented as a collection of alternating cycles with black
and obverse edges (a cycle is alternating if colors of its edges alternate). For any
two black edges (u, v) and (x, y) in the genome (graph) P we define a 2-break rear-
rangement as replacement of these edges with either a pair of edges (u, x), (v, y),
2 While the rebuttal of RBM caused a controversy [10], recent study [11] revealed an

important flaw in arguments supporting RBM [10].
3 We have chosen rather unusual name “obverse” for the color to be consistent with

previous papers on genome rearrangements.

Multi-break Rearrangements: From Circular to Linear Genomes 3

ch

ct

ah

at

bh

bt

ch

ct

ah

at

bh

bt

P
ah

at

bh

bt

ch

ct

QG(P,Q)P

a

b

c

Q

a

b

c

Fig. 1. The breakpoint graph G(P, Q) of unichromosomal genomes P = +a + b − c
and Q = +a + b + c represented as a black-obverse cycle and a gray-obverse cycle
correspondingly

v

u

u y

v x

v

u y

x

u

v

y

x

u

v

y

x

a)

b)

x

t v

y u

z

y

x

c)

u y

v x

x

y

t

u

v

z

d)

Fig. 2. 2-Break on edges (u, v) and (x, y) corresponding to a) Reversal: the edges
belong to the same black-obverse cycle that is rearranged after 2-break; b) Fis-
sion: the edges belong to the same black-obverse cycle that is split by 2-break;
c) Translocation/fusion: the edges belong to different black-obverse cycles that are
joined by 2-break. d) 3-Break on edges (u, v), (x, y) and (z, t) corresponding to
transposition of a segment y . . . t from one chromosome to another. A transposi-
tion cuts off a segment of one chromosome and inserts it into the same or an-
other chromosome. A transposition of a segment πiπi+1 . . . πj of a chromosome
π1π2 . . . πiπi+1 . . . πj . . . πkπk+1 . . . πm into a position k of the same chromosome re-
sults a chromosome π1π2 . . . πi−1πj+1 . . . πkπiπi+1 . . . πjπk+1 . . . πm. For chromosomes
π = π1π2 . . . πiπi+1 . . . πj . . . πm and σ = σ1σ2 . . . σn a transposition of a segment
πiπi+1 . . . πj of chromosome π into a position k in the chromosome σ results in chro-
mosomes π1π2 . . . πi−1πj+1πj+2 . . . πm and σ1σ2 . . . σk−1πiπi+1 . . . πjσk . . . σn.

or a pair of edges (u, y), (v, x). 2-Breaks correspond to standard rearrangement
operations of reversals (Fig. 2a), fissions (Fig. 2b), or fusions/translocations4

(Fig. 2c). 2-Break rearrangements can be generalized as follows. Given k black
edges forming a matching (i.e., a vertex-disjoint set of edges) on 2k vertices,
define a k-break as replacement of these edges with a set of k black edges form-
ing another matching on the same set of 2k vertices. Note that a 2-break is a
particular case of a 3-break (as well as of a k-break for k > 3), in which case
only two edges are replaced and the third one remains the same.

Let P and Q be two signed genomes on the same set of genes G. The breakpoint
graph G(P, Q) is defined on the set of vertices V = {xt, xh | x ∈ G} with edges
of three colors: obverse, black, and gray (Fig. 1). Edges of each color form a

4 This definition of elementary rearrangement operations follows the standard defini-
tions of reversals, translocations, fissions, and fusions for the case of circular chromo-
somes. For circular chromosomes fusions and translocations are not distinguishable.

4 M.A. Alekseyev

matching on V : obverse matching (pairs of obverse vertices), black matching
(adjacent vertices in P), and gray matching (adjacent vertices in Q). Every pair
of matchings forms a collection of alternating cycles in G(P, Q), called black-
gray, black-obverse, and gray-obverse cycles respectively. The chromosomes of
the genome P (resp. Q) can be read along black-obverse (resp. gray-obverse)
cycles. The black-gray cycles in the breakpoint graph play an important role in
analyzing rearrangements [22] (see Chapter 10 of [23] for background information
on genome rearrangements).

2.1 Multi-break Distance Between Circular Genomes

The k-break distance between two genomes is defined as the minimum number of
k-breaks required to transform one genome into the other. In difference from the
genomic distance (for linear multichromosomal genomes) [24,25,26], computing
the 2-break distance for circular multichromosomal genomes is a trivial problem
(first solved in [27] in a slightly different context):

Theorem 1 ([27,1,7]). The 2-break distance between circular genomes P and
Q is d2(P, Q) = |P | − c(P, Q) where c(P, Q) is the number of black-gray cycles
in G(P, Q).

While 2-breaks correspond to standard rearrangements, 3-breaks add
transposition-like operations as well as 3-way fissions and fusions to the set of
rearrangements (Fig. 2c). In difference from standard rearrangements (modelled
as 2-breaks), transpositions introduce 3 breaks in the genome, making them no-
toriously difficult to analyze. Computing the minimum number of transpositions
transforming one genome into another is called sorting by transpositions. A num-
ber of researchers considered transpositions in conjunction with other rearrange-
ment operations [28,29,30,31,32,33,34]. Despite many studies, the complexity of
sorting by transpositions remains unknown [35,36,37,38,39].

Let codd(P, Q) be the number of black-gray cycles in the breakpoint graph
G(P, Q) with an odd number of black edges (odd cycles).

Theorem 2 ([1,7]). The 3-break distance between a black matching P and a
gray matching Q is d3(P, Q) = |P |−codd(P,Q)

2 .

A general formula as well as algorithms for computing the k-break distance can
be found in [1].

2.2 Breakpoint Re-Use in Circular Genomes

If each of d3(P, Q) 3-breaks on a shortest evolutionary path from a circular
genome P to a circular genome Q made 3 breaks (complete 3-breaks), it would
result in the breakpoint re-use rate 3·d3(P,Q)

|P | (i.e., the total number of breaks
divided by the number of genes). In reality, some 3-breaks can make 2 breaks
(incomplete 3-breaks) as 2-breaks are particular cases of 3-breaks, reducing the

Multi-break Rearrangements: From Circular to Linear Genomes 5

estimate for the breakpoint re-use rate. Moreover, the minimum breakpoint re-
use rate may be achieved on a suboptimal evolutionary path from P to Q.

The rebuttal of RBM raises a question about finding a transformation of one
genome into the other by 3-breaks that makes the minimum number of individual
breaks. The following theorem shows that there exists a series of d3(P, Q) 3-breaks
that makes the minimum number of breaks while transforming P into Q:

Theorem 3 ([2]). Any series of m k-breaks transforming a circular genome P
into a circular genome Q makes at least m + d2(P, Q) breaks. Moreover, there
exists a series of d3(P, Q) 3-breaks transforming P into Q that makes d3(P, Q)+
d2(P, Q) breaks.

The following theorem shows how the minimum number of breaks in a series of
3-breaks transforming P into Q depends on the number of complete 3-breaks.

Theorem 4 ([2]). Any series of 3-breaks with t complete 3-breaks, transform-
ing a circular genome P into a circular genome Q, makes at least d2(P, Q) +
max{d2(P, Q)−t, d3(P, Q)} breaks. In particular, any such series of 3-breaks with
t ≤ d2(P, Q) − d3(P, Q) complete 3-breaks makes at least 2d2(P, Q) − t breaks.

In [2] this theorem was applied to the human genome H and the mouse genome
M consisting of the 281 synteny blocks from [40] under the assumption that all
chromosomes are circular. In the next section we will provide similar estimates
for the more relevant case of linear genomes.

The breakpoint graph G(H, M) contains 35 black-gray cycles including 3 odd
black-gray cycles, implying that d2(H, M) = 281 − 35 = 246 (Theorem 1) and
d3(H, M) = 139 (Theorem 2). Theorem 3 implies that the minimum number of
breaks for 2-break sorting H into M is d2(H, M) + d2(H, M) = 246 + 246 =
492 while for 3-break sorting the minimum number of breaks is d3(H, M) +
d2(H, M) = 139 + 246 = 385.

Figure 3a gives the lower bound for the breakpoint re-use rate as a function
of the number of complete 3-breaks in a series of rearrangements transforming H
into M . It was argued in [2] that in order to achieve small breakpoint re-use rate
between the genomes H and M , the number of complete 3-breaks must be large.

3 Rearrangements in Linear Genomes

A linear genome is a collection of linear chromosomes represented as sequences of
signed elements (genes). Similarly to circular genomes, we represent each linear
chromosome on n genes as a sequence of n directed obverse edges (encoding genes
and their direction) and n−1 undirected black edges (connecting adjacent genes).
So, each linear chromosome is an alternating path of obverse and black edges
(starting and ending with obverse edges), and a linear genome is a collection of
such paths.

Every linear genome P with m chromosomes has 2m vertices representing
endpoints of the chromosomes. If we introduce an arbitrary perfect matching

6 M.A. Alekseyev

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 10 20 30 40 50 60 70 80 90

B
re

ak
po

in
t r

e-
us

e
ra

te

Number of complete 3-breaks

a)

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 10 20 30 40 50 60 70 80 90

B
re

ak
po

in
t r

e-
us

e
ra

te

Number of transpositions

b)

Fig. 3. The lower bound on the breakpoint re-use rate for human and mouse genomes
based on 281 synteny blocks from [40]. The lower bound is represented as a function
of a) the number of complete 3-breaks in a series of 3-breaks between the circularized
human and mouse genomes. (Reproduced from [2]). b) the number of transpositions in
a series of rearrangements between the linear human and mouse genomes.

on these 2m vertices, consisting of black closing edges, the resulting graph will
represent some circular genome that contains P as a subgraph. We call the
resulting genome a closure of P and note that in general it is not uniquely
defined. Black edges that belong to P are called non-closing.

Throughout this section we assume that P and Q are linear genomes on the
same set of genes.

3.1 Rearrangement Distance Between Linear Genomes

Let dl
2(P, Q) be the genomic distance between the genomes P and Q, i.e., the

minimum number of reversals, translocations, fissions, and fusions required to
transform P into Q. Also, let dl

3(P, Q) be the minimum number of reversals,
translocations, fissions, and fusions as well as transpositions required to trans-
form P into Q.

Theorem 5. For any closure P ′ of a genome P , there exists a closure Q′ of
a genome Q such that dl

2(P, Q) ≥ d2(P ′, Q′). Similarly, for any closure P ′ of
a genome P , there exists a closure Q′ of a genome Q such that dl

3(P, Q) ≥
d3(P ′, Q′).

Proof. Let S′ be a closure of a linear genome S. We note that any reversal,
translocation, fission, or fusions transforming the genome S into a linear genome
T corresponds to a 2-break transforming the closure S′ into some closure T ′ of the
genome T (Fig. 4a,b,c,d). Similarly, any transposition transforming the genome
S into a linear genome T corresponds to a 3-break transforming the closure S′

into some closure T ′ of the genome T (Fig. 4e).
For the genomes P and Q, consider a series of dl

k(P, Q) (k = 2 or k = 3)
rearrangements transforming P into Q. This series corresponds to a series of
k-breaks transforming P ′ into some circular genome Q′ that is a closure of

Multi-break Rearrangements: From Circular to Linear Genomes 7

u vx y z tw

e)

u vx y z t
w

u v

x yvu

u vx y

a)

x yu v x y

x yu v

u v

z v t

z v tux y

ux y

d)b) c)

x y z

z

t

t

Fig. 4. Rearrangements of linear genomes correspond to k-breaks over closures: a)
Reversal of the region (u, v) is a 2-break over non-closing black edges; b) Fission at
the black edge (u, v) is the identity multi-break over the edge (u, v), re-claiming this
edge as closing; c) Fusion of the chromosomes endpoints y and z is a 2-break replacing
closing edges (y, u) and (z, v) with a non-closing edge (y, z) and a closing edge (u, v);
d) Translocation exchanging chromosomes parts (u, y) and (v, t) is a 2-break operating
over non-closing edges; e) Transposition is a 3-break operating over non-closing edges.

the genome Q. To complete the proof it is sufficient to notice that the dis-
tance dk(P ′, Q′) between the genomes P ′ and Q′ does not exceed dl

k(P, Q), i.e.,
dk(P ′, Q′) ≤ dl

k(P, Q). ��

Theorem 5 immediately implies:

Corollary 6. For any linear genomes P and Q, k = 2 or k = 3,

dl
k(P, Q) ≥ maxP ′ minQ′ dk(P ′, Q′),

dl
k(P, Q) = dl

k(Q, P) ≥ maxQ′ minP ′ dk(P ′, Q′)

where P ′ and Q′ vary over all possible closures of the genomes P and Q respectively.

Since the k-break distance dk(P ′, Q′) (k = 2 or k = 3) gives a lower bound for
the linear distance dl

k(P, Q), our goal is to make this bound as tight as possible by
choosing appropriate closures P ′ and Q′. We start with defining the breakpoint
graph of linear genomes and a number of its characteristics that we will find useful.

Let P ′ and Q′ be closures of linear genomes P and Q. The breakpoint graph
G(P, Q) is defined as a result of removal of all closing edges from the breakpoint
graph G(P ′, Q′) (of circular genomes P ′ and Q′). It is easy to see that G(P, Q) is
well-defined by the genomes P and Q and does not depend on a particular choice of
closures P ′ and Q′. Every cycle in G(P ′, Q′) with m closing edges will be split into
m paths in G(P, Q). Therefore, the black-gray connected components of G(P, Q)
are formed by c(P, Q) black-gray cycles and a number of black-gray paths. We
distinguish between black-gray paths with both terminal edges of black color (bb-
paths), with both terminal edges of gray color (gg-paths), and with terminal edges
of different colors (bg-paths), including isolated vertices viewed as bg-paths with
zero black and zero gray edges. We denote the number of such paths by lbb(P, Q),
lgg(P, Q), and lbg(P, Q) respectively (note that the number lbg(P, Q) is always
even). The total number of black-gray connected components in G(P, Q) is

cc(P, Q) = c(P, Q) + lbb(P, Q) + lgg(P, Q) + lbg(P, Q).

8 M.A. Alekseyev

We also distinguish between black-gray connected components with odd/even
number of black/gray edges and call them b-odd, b-even, g-odd, g-even respec-
tively. To refer to the number of such components we will use these aliases as
superscripts. Similarly to cycles, bg-paths have the same number of black and
gray edges, so we call bg-paths simply odd and even, depending on the oddness
of the number of black edges. Relatedly, lodd

bg (P, Q) and leven
bg (P, Q) will stand

for the number of odd and even bg-paths. We rely on the following identities:
∀j ∈ {bb, bg, gg},

lj(P,Q) = lb−odd
j (P,Q) + lb−even

j (P,Q), lj(P,Q) = l
g−odd
j (P,Q) + l

g−even
j (P,Q);

∀j ∈ {bb, gg},

lb−odd
j (P,Q) = l

g−even
j (P,Q), lb−even

j (P,Q) = l
g−odd
j (P,Q).

These identities allow to compute all the characteristics defined above as soon

as c(P, Q), codd(P, Q), lbb(P, Q), lb−odd
bb (P, Q), lgg(P, Q), lb−odd

gg (P, Q), lbg(P, Q),
lodd
bg (P, Q) are given.

Similarly to the breakpoints graphs for circular and linear genomes, we can
define the breakpoint graph and associated characteristics in the case when one
genome is circular while the other is linear (in such a graph all paths are either
bb-paths or gg-paths).

Lemma 7. For a circular genome P ′ and a linear genome Q,

min
Q′

d2(P ′, Q′) = |P ′| − cc(P ′, Q) and min
Q′

d3(P ′, Q′) =
|P ′| − ccb−odd(P ′, Q)

2

where Q′ varies over all possible closures of the genome Q.

Proof. Theorem 1 implies that minQ′ d2(P ′, Q′) = |P ′| − maxQ′ c(P ′, Q′). To
maximize c(P ′, Q′), the closure Q′ needs to be chosen in such a way that it
closes each path in the breakpoint graph G(P ′, Q) into a separate black-gray
cycle. Therefore, maxQ′ c(P ′, Q′) = cc(P ′, Q).

Similarly, Theorem 2 implies that

min
Q′

d3(P ′, Q′) =
|P ′| − maxQ′ codd(P ′, Q′)

2
.

To maximize codd(P ′, Q′), the closure Q′ needs to be chosen in such a way that it
closes each b-odd path in the breakpoint graph G(P ′, Q) into a separate black-
gray cycle. Therefore, maxQ′ c(P ′, Q′) = ccb−odd(P ′, Q). ��

Theorem 8. For linear genomes P and Q, maxP ′ minQ′ d2(P ′, Q′) = B2(P, Q)
where

B2(P, Q) = |P | − c(P, Q) − max{1,
lbg(P, Q)

2
} − lbb(P, Q),

implying that dl
2(P, Q) ≥ max{B2(P, Q), B2(Q, P)}.

Multi-break Rearrangements: From Circular to Linear Genomes 9

Proof. By Lemma 7 we have maxP ′ minQ′ d2(P ′, Q′) = |P |−minP ′ cc(P ′, Q). In
order to minimize cc(P ′, Q), the closure P ′ needs to be chosen in such a way
that it minimizes the number of black-gray connected components in G(P, Q).
This can be done as follows. If lbg(P, Q) = 0, then we will connect (using closing
black edges) all the gg-paths into a single cycle. If lbg(P, Q) > 0, we will first
connect a pair of bg-paths and all the gg-paths into a single bb-path, and then
form pairs of the remaining bg-paths and connect bg-paths in each pair into a
bb-path. As a result, minP ′ cc(P ′, Q) = c(P, Q) + max{1,

lbg(P,Q)
2 } + lbb(P, Q).

Therefore, maxP ′ minQ′ d2(P ′, Q′) = B2(P, Q) and by Corollary 6, dl
2(P, Q) ≥

B2(P, Q). Moreover, since dl
2(P, Q) = dl

2(Q, P) ≥ B2(Q, P), we have dl
2(P, Q) ≥

max{B2(P, Q), B2(Q, P)}. ��

Lemma 9. For linear genomes P and Q, minP ′ ccb−odd(P ′, Q) = L3(P, Q)
where

L3(P, Q) = codd(P, Q) + lb−odd
bb (P, Q) + δ(P, Q)

+ max
{

0,
|lodd

bg (P,Q)−leven
bg (P,Q)|

2 − lb−even
gg (P, Q)

}

and δ(P, Q) = max
{

0, lb−even
gg (P, Q) − |lodd

bg (P,Q)−leven
bg (P,Q)|

2

}
mod 2.

Proof. Note that in any closure of P , the closing (black) edges connect gg-
paths and bg-paths from G(P, Q) into m1 = lbg(P,Q)

2 bb-paths and a number
of cycles. Note that if lbg(P, Q) = 0 then connecting all gg-paths into a single
cycle (which will be odd iff lb−even

gg (P, Q) is odd) gives an optimal closure P ′′

(i.e., for which minP ′ ccb−odd(P ′, Q) = ccb−odd(P ′′, Q)). It is easy to check that
in this case ccb−odd(P ′′, Q) = L3(P, Q). For the rest of the proof we assume that
lbg(P, Q) > 0.

We will show that there exists an optimal closure where the closing edges do
not connect any gg-paths into a cycle. Such an optimal closure can be obtained
from an arbitrary optimal closure P ′′ as explained below. Since lbg(P, Q) > 0,
the closing edges in G(P ′′, Q) create at least one bb-path formed by two bg-paths
at the ends and possibly gg-paths in the middle. Let us re-connect (modifying
the set of closing edges) all the gg-paths from G(P, Q), that are connected into
cycles in G(P ′′, Q), in the middle of this bb-path. Note that such modification of
the closure may change the b-oddness of the affected bb-path but only if at least
one of the destroyed cycles was odd. In any case the number of b-odd connected
components is not increased. Therefore, the modified closure is optimal and
satisfies the required property by construction. Without loss of generality we
will assume that the closing edges create no cycles.

Bringing black closing edges into G(P, Q) can be viewed as a two-step process:
first, connecting gg-paths into longer gg-paths; and second, connecting pairs of
bg-paths and maybe single gg-paths into bb-paths. Our goal is to minimize the
number of b-odd bb-paths or, equivalently, to maximize the number of b-even
bb-paths.

Consider an outcome of the first step. It is clear that connection of two b-odd
gg-paths or two b-even gg-paths results in a b-odd gg-path, while connection

10 M.A. Alekseyev

of b-odd and b-even gg-paths results in b-even gg-path. As we will see b-even
gg-paths are more preferable than b-odd gg-paths. After the first step we can
have up to m2 = lb−even

gg (P, Q) b-even gg-paths.
Now, consider the second step. Connection of an odd bg-path and an even

bg-path with an optional b-odd gg-path in between create a b-even bb-path. At
the same time connection of a pair of odd bg-paths or a pair of even bg-paths
requires a b-even gg-path in between in order to produce a b-even bb-path. All
other combinations of bg-paths and gg-paths result in b-odd bb-paths.

We can create m3 = min{lodd
bg (P, Q), leven

bg (P, Q)} b-even bb-paths without

any use of gg-paths, and up to m4 =
|lodd

bg (P,Q)−leven
bg (P,Q)|

2 b-even bb-paths (note
that m3 + m4 = m1), each of which requires a b-even gg-path in the middle.
Hence, we can create m5 = m3 + min{m4, m2} = min{m1, m2 + m3} b-even
bb-paths. The other m6 = m1 − m5 = max{0, m4 − m2} bb-paths (formed
by pairs of bg-paths of the same oddness) will be b-odd. So far we have used
min{m4, m2} b-even gg-paths. The other gg-paths (if any) can be connected
(at the first step) into a single gg-path that is b-odd iff m2 − min{m4, m2} =
max{m2 − m4, 0} is odd (i.e., δ(P, Q) = 1). The b-odd gg-path can be easily
incorporated into any of created bb-paths without changing its b-oddness. The
b-even gg-path we have to incorporate into some of created b-even bb-paths
and turn it into a b-odd bb-path. Hence, for an optimal closure P ′, there are
lb−odd
bb (P, Q)+m6+δ(P, Q) b-odd bb-paths and codd(P, Q) odd cycles in G(P ′, Q),
implying that ccb−odd(P ′, Q) = codd(P, Q) + lb−odd

bb (P, Q) + m6 + δ(P, Q). ��

Theorem 10. ForlineargenomesP andQ,dl
3(P, Q) ≥ max{B3(P, Q), B3(Q, P)}

where B3(P, Q) = |P |−L3(P,Q)
2 .

Proof. Since dl
3(P, Q) = dl

3(Q, P) it is sufficient to show that dl
3(P, Q) ≥ B3(P, Q).

Corollary 6 and Lemma 7 imply

dl
3(P, Q) ≥ max

P ′
min
Q′

d3(P ′, Q′) =
|P | − minP ′ ccb−odd(P ′, Q)

2
.

Now, application of Lemma 9 completes the proof. ��

3.2 Breakpoint Re-Use in Linear Genomes

Similarly to the case of circular genomes, we are interested in estimating the total
number breaks required to transform a linear genome P into a linear genome Q
with reversals, fusions, fissions, translocations, and transpositions. According to
Theorem 5, any series of such rearrangements corresponds to a series of 3-breaks
transforming a closure P ′ of the genome P into some closure Q′ of the genome Q.
Let bc(P, Q) be the minimum number of breaks made in such a series of 3-breaks
(over all possible closures P ′ and Q′). Theorems 5 and 3 imply:

Corollary 11. For linear genomes P and Q,

bc(P, Q) ≥ maxP ′ minQ′ d3(P ′, Q′) + d2(P ′, Q′),
bc(P, Q) = bc(Q, P) ≥ maxQ′ minP ′ d3(P ′, Q′) + d2(P ′, Q′)

Multi-break Rearrangements: From Circular to Linear Genomes 11

where P ′ and Q′ vary over all possible closures of the genomes P and Q respectively.

To find out the exact value of maxP ′ minQ′ d3(P ′, Q′) + d2(P ′, Q′) we need the
following lemma:

Lemma 12. For a circular genome P ′ and a linear genome Q,

min
Q′

d2(P ′, Q′) + d3(P ′, Q′) =
3
2
|P ′| − 3ccb−odd(P ′, Q) + 2ccb−even(P ′, Q)

2
.

Proof. Theorems 1 and 2 imply that

min
Q′

d3(P ′, Q′) + d2(P ′, Q′) =
3
2
|P ′| − maxQ′ 3codd(P ′, Q′) + 2ceven(P ′, Q′)

2
.

To maximize 3codd(P ′, Q′)+2ceven(P ′, Q′), a closure Q′ has to be chosen in such
a way that it closes each path in the breakpoint graph G(P ′, Q), into a separate
black-gray cycle. Indeed, having m > 1 paths connected into a single cycle is
always worse than connecting each of these paths into a separate cycle as 3 < 2m.
Therefore, for an optimal closure Q′, we have codd(P ′, Q′) = ccb−odd(P ′, Q) and
ceven(P ′, Q′) = ccb−even(P ′, Q). ��

Theorem 13. For linear genomesP andQ,maxP ′minQ′d3(P ′, Q′)+d2(P ′, Q′) =
B23(P, Q) where

B23(P, Q) =
3
2
|P | − c(P, Q) − lbb(P, Q) − lbg(P, Q) + L3(P, Q)

2
,

implying that bc(P, Q) ≥ max{B23(P, Q), B23(Q, P)}.

Proof. By Lemma 12 we have

max
P ′

min
Q′

d3(P ′, Q′)+d2(P ′, Q′) =
3
2
|P |−

minP ′ 3ccb−odd(P ′, Q) + 2ccb−even(P ′, Q)
2

.

Note that if lbg(P, Q) = 0 then connecting all gg-paths into a single cycle
(which will be odd iff lb−even

gg (P, Q) is odd) gives an optimal closure P ′. It is easy
to check that in this case maxP ′ minQ′ d3(P ′, Q′) + d2(P ′, Q′) = B23(P, Q). For
the rest of the proof we assume that lbg(P, Q) > 0.

Note that in any closure of P , the closing (black) edges connect gg-paths and
bg-paths from G(P, Q) into bb-paths and cycles. We will show that in an optimal
closure the closing edges do not connect any gg-paths into a cycle. Indeed, since
lbg(P, Q) > 0, the closing edges create at least one bb-path formed by two bg-paths
at the ends and possibly gg-paths in the middle. It is easy to see that it is always
better to include more gg-paths in the middle of this bb-path (maybe letting the
objective function increase by one) rather than to create a separate cycle out of
these gg-paths (in which case the objective function would increase by at least 2).
Therefore, closing edges in an optimal closure P ′ connect gg-paths and bg-paths

12 M.A. Alekseyev

from G(P, Q) into lbg(P,Q)
2 bb-paths in G(P ′, Q). As the total number of new bb-

paths is fixed, the problem of minimizing 3ccb−odd(P ′, Q) + 2ccb−even(P ′, Q) is
equivalent to minimizing ccb−odd(P ′, Q). For an optimal closure P ′, Lemma 9 gives
ccb−odd(P ′, Q) = L3(P, Q), implying that

3ccb−odd(P ′, Q) + 2ccb−even(P ′, Q) = 2cc(P ′, Q) + ccb−odd(P ′, Q)
= 2(c(P, Q) + lbb(P, Q) + lbg(P,Q)

2) + L3(P, Q)

and thus maxP ′ minQ′ d3(P ′, Q′) + d2(P ′, Q′) = B23(P, Q).
By Corollary 11 we have bc(P, Q) ≥ B23(P, Q) and bc(P, Q) ≥ B23(Q, P),

implying that bc(P, Q) ≥ max{B23(P, Q), B23(Q, P)}. ��

We will now prove the following analog of Theorem 4:

Theorem 14. Any series of rearrangements with t transpositions, transforming
a linear genome P into a linear genome Q, makes at least max{2B2(P, Q) − t,
B23(P, Q)} − chr(P) + chr(Q) breaks, where chr(·) denotes the number of chro-
mosomes. In particular, any such series of rearrangements with t ≤ 2B2(P, Q)−
B23(P, Q) transpositions makes at least 2B2(P, Q) − chr(P) + chr(Q) − t breaks.

Proof. By Theorem 5, any series of rearrangements transforming the genome P
into the genome Q corresponds to a series of 3-breaks transforming a closure
P ′ of P into some closure Q′ of Q. We note that every rearrangement makes
the same number of breaks as the corresponding 3-break in the closures;5 except
for fusions that make smaller number of breaks than the corresponding 2-breaks
in the closures (Fig. 4b), and for fissions that make breaks in linear genomes
but correspond to identity multi-breaks (making no breaks) in their closures
(Fig. 4c).

Let u, v, t be respectively the number of fusions, fissions, and transpositions
in a series of m rearrangements transforming the genome P into the genome Q
and making b breaks in total. Then there is a series of 3-breaks, transforming a
closure P ′ into a closure Q′, that makes b + u − v breaks in total. Since every
fusion decreases the number of chromosomes by one, while every fission increases
the number of chromosomes by one, u − v = chr(P) − chr(Q). By Theorem 4,

b + u − v = b + chr(P) − chr(Q) ≥ d2(P ′, Q′) + max{d2(P ′, Q′) − t, d3(P ′, Q′)},

implying that b ≥ max{2d2(P ′, Q′)−t, d2(P ′, Q′)+d3(P ′, Q′)}+chr(Q)−chr(P).
Taking maxP ′ minQ′ of the right hand side of this inequality, we have b ≥
max{2B2(P, Q) − t, B23(P, Q)} + chr(Q) − chr(P). ��
5 We assume that a transposition always makes 3 breaks even if it transposes a part

of chromosome starting with one of its ends, a translocation always makes 2 breaks
even if it exchanges an entire chromosome with a part of another chromosome, and
a reversal always makes 2 breaks even if it involves an end of a chromosome. The
biological rationale for this assumption is that chromosomes are flanked by telomeres
that while remaining “invisible” in genomic sequences, can account for breakpoint
re-use in the same way as any other genomic position.

Multi-break Rearrangements: From Circular to Linear Genomes 13

Using 281 synteny blocks between the linear human genome H and mouse
genome M from [40], we estimate the breakpoint re-use rate across these (lin-
ear) genomes. The breakpoint graph G(H, M) have the following parameters:
(c, lbb, lgg, lbg) = (28, 12, 15, 16), (codd, lb−odd

bb , lb−odd
gg , lodd

bg) = (2, 5, 4, 3), chr(H) =
23, chr(M) = 20, B2(H, M) = 233, B2(M, H) = 230, B3(H, M) = 137,
B3(M, H) = 134, B23(H, M) = 370, and B23(M, H) = 364. Theorems 8 and
10 imply that dl

2(H, M) ≥ 233 and dl
3(H, M) ≥ 137.

Theorem 14 gives the lower bound for the breakpoint re-use rate (as a function
of the number of transpositions) between the genomes H and M , shown in
Fig. 3b. This illustrates that a very large number of transpositions would be
necessary to bring the breakpoint re-use rate below the 1.25 rate expected for
RBM (see [9,2]). Therefore, Sankoff’s argument that high breakpoint re-use rate
reported for human-mouse genomic architectures is an artifact caused by not
accounting for complex rearrangements [21] may only hold if one assumes that
transpositions are dominant rearrangement operations that are more frequent
than reversals, translocations, fissions, and fusions. While detailed analysis of
such an extreme rearrangement scenario remains beyond the scope of this paper
we remark that currently there is no biological evidence to support this scenario.

References

1. Alekseyev, M.A., Pevzner, P.A.: Multi-Break Rearrangements and Chromosomal
Evolution. Theoretical Computer Science (to appear, 2007)

2. Alekseyev, M.A., Pevzner, P.A.: Are There Rearrangement Hotspots in the Human
Genome? PLos Computational Biology (to appear, 2007)

3. Sachs, R.K., Levy, D., Hahnfeldt, P., Hlatky, L.: Quantitative analysis of radiation-
induced chromosome aberrations. Cytogenetic and Genome Research 104, 142–148
(2004)

4. Levy, D., Vazquez, M., Cornforth, M., Loucas, B., Sachs, R.K., Arsuaga, J.: Com-
paring DNA damage-processing pathways by computer analysis of chromosome
painting data. J. Comput. Biol. 11, 626–641 (2004)

5. Vazquez, M., et al.: Computer analysis of mFISH chromosome aberration data
uncovers an excess of very complicated metaphases. Int. J. Radiat. Biol. 78(12),
1103–1115 (2002)

6. Sachs, R.K., Arsuaga, J., Vazquez, M., Hlatky, L., Hahnfeldt, P.: Using graph
theory to describe and model chromosome aberrations. Radiat Research 158, 556–
567 (2002)

7. Alekseyev, M.A., Pevzner, P.A.: Whole Genome Duplications, Multi-Break Re-
arrangements, and Genome Halving Theorem. Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA) , 665–679 (2007)

8. Nadeau, J.H., Taylor, B.A.: Lengths of Chromosomal Segments Conserved since
Divergence of Man and Mouse. Proceedings of the National Academy of Sci-
ences 81(3), 814–818 (1984)

9. Pevzner, P.A., Tesler, G.: Human and mouse genomic sequences reveal extensive
breakpoint reuse in mammalian evolution. Proceedings of the National Academy
of Sciences 100, 7672–7677 (2003)

10. Sankoff, D., Trinh, P.: Chromosomal breakpoint re-use in the inference of genome
sequence rearrangement. In: Proceedings of the Eighth Annual International Con-
ference on Computational Molecular Biology (RECOMB), pp. 30–35 (2004)

14 M.A. Alekseyev

11. Peng, Q., Pevzner, P.A., Tesler, G.: The Fragile Breakage versus Random Breakage
Models of Chromosome Evolution. PLoS Comput. Biol. 2, e14 (2006)

12. Murphy, W.J., Larkin, D.M., van der Wind, A.E., Bourque, G., Tesler, G., Auvil,
L., Beever, J.E., Chowdhary, B.P., Galibert, F., Gatzke, L., Hitte, C., Meyers, C.N.,
Milan, D., Ostrander, E.A., Pape, G., Parker, H.G., Raudsepp, T., Rogatcheva,
M.B., Schook, L.B., Skow, L.C., Welge, M., Womack, J.E., OBrien, S.J., Pevzner,
P.A., Lewin, H.A.: Dynamics of Mammalian Chromosome Evolution Inferred from
Multispecies Comparative Map. Science 309(5734), 613–617 (2005)

13. van der Wind, A.E., Kata, S.R., Band, M.R., Rebeiz, M., Larkin, D.M., Everts,
R.E., Green, C.A., Liu, L., Natarajan, S., Goldammer, T., Lee, J.H., McKay, S.,
Womack, J.E., Lewin, H.A.: A 1463 Gene Cattle-Human Comparative Map With
Anchor Points Defined by Human Genome Sequence Coordinates. Genome Re-
search 14(7), 1424–1437 (2004)

14. Bailey, J., Baertsch, R., Kent, W., Haussler, D., Eichler, E.: Hotspots of mammalian
chromosomal evolution. Genome Biology 5(4), R23 (2004)

15. Zhao, S., Shetty, J., Hou, L., Delcher, A., Zhu, B., Osoegawa, K., de Jong, P.,
Nierman, W.C., Strausberg, R.L., Fraser, C.M.: Human, Mouse, and Rat Genome
Large-Scale Rearrangements: Stability Versus Speciation. Genome Research 14,
1851–1860 (2004)

16. Webber, C., Ponting, C.P.: Hotspots of mutation and breakage in dog and human
chromosomes. Genome Research 15(12), 1787–1797 (2005)

17. Hinsch, H., Hannenhalli, S.: Recurring genomic breaks in independent lineages
support genomic fragility. BMC Evolutionary Biology 6, 90 (2006)

18. Ruiz-Herrera, A., Castresana, J., Robinson, T.J.: Is mammalian chromosomal evo-
lution driven by regions of genome fragility? Genome Biology 7, R115 (2006)

19. Mehan, M.R., Almonte, M., Slaten, E., Freimer, N.B., Rao, P.N., Ophoff, R.A.:
Analysis of segmental duplications reveals a distinct pattern of continuation-of-
synteny between human and mouse genomes. Human Genetics 121(1), 93–100
(2007)

20. Kikuta, H., Laplante, M., Navratilova, P., Komisarczuk, A.Z, Engstrom, P.G., Fred-
man, D., Akalin, A., Caccamo, M., Sealy, I., Howe, K., Ghislain, J., Pezeron, G.,
Mourrain, P., Ellingsen, S., Oates, A.C., Thisse, C., Thisse, B., Foucher, I., Adolf,
B., Geling, A., Lenhard, B., Becker, T.S.: Genomic regulatory blocks encompass
multiple neighboring genes and maintain conserved synteny in vertebrates. Genome
Research 17(5), 545–555 (2007)

21. Sankoff, D.: The signal in the genome. PLoS Computational Biology 2(4), 320–321
(2006)

22. Bafna, V., Pevzner, P.A.: Genome rearrangement and sorting by reversals. SIAM
Journal on Computing 25, 272–289 (1996)

23. Pevzner, P.A.: Computational Molecular Biology: An Algorithmic Approach. MIT
Press, Cambridge (2000)

24. Hannenhalli, S., Pevzner, P.: Transforming men into mouse (polynomial algorithm
for genomic distance problem). In: Proceedings of the 36th Annual Symposium on
Foundations of Computer Science, pp. 581–592 (1995)

25. Tesler, G.: Efficient algorithms for multichromosomal genome rearrangements. J.
Comput. Syst. Sci. 65, 587–609 (2002)

26. Ozery-Flato, M., Shamir, R.: Two Notes on Genome Rearrangement. Journal of
Bioinformatics and Computational Biology 1, 71–94 (2003)

27. Yancopoulos, S., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations
by translocation, inversion and block interchange. Bioinformatics 21, 3340–3346
(2005)

Multi-break Rearrangements: From Circular to Linear Genomes 15

28. Bader, M., Ohlebusch, E.: Sorting by weighted reversals, transpositions, and in-
verted transpositions. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P., Wa-
terman, M. (eds.) RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 563–577. Springer,
Heidelberg (2006)

29. Gu, Q.P., Peng, S., Sudborough, H.: A 2-approximation algorithm for genome
rearrangements by reversals and transpositions. Theoret. Comput. Sci. 210, 327–
339 (1999)

30. Hartman, T., Sharan, R.: A 1.5-approximation algorithm for sorting by transposi-
tions and transreversals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI),
vol. 3240, pp. 50–61. Springer, Heidelberg (2004)

31. Lin, G.H., Xue, G.: Signed genome rearrangements by reversals and transpositions:
models and approximations. Theoret. Comput. Sci. 259, 513–531 (2001)

32. Lin, Y.C., Lu, C.L., Chang, H.-Y., Tang, C.Y.: An Efficient Algorithm for Sorting
by Block-Interchanges and Its Application to the Evolution of Vibrio Species. J.
Comput. Biol. 12, 102–112 (2005)

33. Radcliffe, A.J., Scott, A.D., Wilmer, E.L.: Reversals and Transpositions Over Finite
Alphabets. SIAM J. Discrete Math. 19, 224–244 (2005)

34. Walter, M.E., Dias, Z., Meidanis, J.: Reversal and transposition distance of linear
chromosomes. In: String Processing and Information Retrieval: A South American
Symposium (SPIRE), pp. 96–102 (1998)

35. Bafna, V., Pevzner, P.A.: Sorting permutations by transpositions. SIAM J. Discrete
Math. 11, 224–240 (1998)

36. Christie, D.A.: Genome Rearrangement Problems. PhD thesis, University of Glas-
gow (1999)

37. Walter, M.E., Reginaldo, L., Curado, A.F., Oliveira, A.G.: Working on the Problem
of Sorting by Transpositions on Genome Rearrangements. In: Baeza-Yates, R.A.,
Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 372–383.
Springer, Heidelberg (2003)

38. Hartman, T.: A simpler 1.5-approximation algorithm for sorting by transposi-
tions. In: Baeza-Yates, R.A., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS,
vol. 2676, pp. 156–169. Springer, Heidelberg (2003)

39. Elias, I., Hartman, T.: A 1.375-Approximation Algorithm for Sorting by Transpo-
sitions. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp.
204–214. Springer, Heidelberg (2005)

40. Pevzner, P., Tesler, G.: Genome Rearrangements in Mammalian Evolution: Lessons
from Human and Mouse Genomes. Genome Research 13(1), 37–45 (2003)

A Pseudo-boolean Programming Approach for

Computing the Breakpoint Distance Between
Two Genomes with Duplicate Genes

Sébastien Angibaud1, Guillaume Fertin1, Irena Rusu1, Annelyse Thévenin2,
and Stéphane Vialette2

1 Laboratoire d’Informatique de Nantes-Atlantique (LINA), FRE CNRS 2729
Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3 - France

{angibaud,fertin,rusu}@lina.univ-nantes.fr
2 Laboratoire de Recherche en Informatique (LRI), UMR CNRS 8623

Faculté des Sciences d’Orsay - Université Paris-Sud, 91405 Orsay - France
{thevenin,vialette}@lri.fr

Abstract. Comparing genomes of different species has become a cru-
cial problem in comparative genomics. Recent research have resulted in
different genomic distance definitions: number of breakpoints, number of
common intervals, number of conserved intervals, Maximum Adjacency
Disruption number (MAD), etc. Classical methods (usually based on
permutations of gene order) for computing genomic distances between
whole genomes are however seriously compromised for genomes where
several copies of the same gene may be scattered across the genome.
Most approaches to overcoming this difficulty are based on the exemplar
method (keep exactly one copy in each genome of each duplicated gene)
and the maximum matching method (keep as many copies as possible in
each genome of each duplicated gene). Unfortunately, it turns out that, in
presence of duplications, most problems are NP–hard, and hence several
heuristics have been recently proposed.

Extending research initiated in [2], we propose in this paper a novel
generic pseudo-boolean approach for computing the exact breakpoint
distance between two genomes in presence of duplications for both the
exemplar and maximum matching methods. We illustrate the application
of this methodology on a well-known public benchmark dataset of γ-
Proteobacteria.

Keywords: genome rearrangement, duplication, breakpoint distance,
heuristic, pseudo-boolean programming.

1 Introduction

The order of genes in the genomes of species can change during evolution and can
provide information about their phylogenetic relationship. Two main approaches
are possible. The first one consists in using different types of rearrangement op-
erations and to find possible rearrangement scenarios using these operations (one

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 16–29, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Pseudo-boolean Programming Approach 17

of the most common rearrangement operations is reversals, which reverse the or-
der of a subset of neighboring genes) [11]. The second one consists in computing
a (dis-)similarity measure based on the gene order and most common rearrange-
ment operations [15,8,4,1]. We focus in this paper on the latter approach.

Several similarity (or dissimilarity) measures between two whole genomes have
been recently proposed, such as the number of breakpoints [15,8,4], the number
of reversals [8,11], the number of conserved intervals [6], the number of common
intervals [7], the Maximum Adjacency Disruption Number (MAD) [16], etc. How-
ever, in the presence of duplications and for each of the above measures, one has
first to disambiguate the data by inferring orthologs, i.e., a non-ambiguous map-
ping between the genes of the two genomes. Up to now, two extremal approaches
have been considered : the exemplar model and the maximum matching model.
In the exemplar model [15], for all gene families, all but one occurrence in each
genome is deleted. In the maximum matching model [4,10], the goal is to map
as many genes as possible. These two models can be considered as the extremal
cases of the same generic homolog assignment approach.

Unfortunately, it has been shown that, for each of the above mentioned mea-
sures, whatever the considered model (exemplar or maximum matching), the
problem becomes NP–complete as soon as duplicates are present in genomes
[8,4,6,10] ; a few inapproximability results are known for some special cases.
Therefore, several heuristic methods have been recently devised to obtain (hope-
fully) good solutions in a reasonable amount of time [5,7]. However, while it
is relatively easy to compare heuristics between them, until now very little is
known about the absolute accuracy of these heuristics. Therefore, there is a great
need for algorithmic approaches that compute exact solutions for these genomic
distances.

Extending research initiated in [2], we propose in this paper a novel generic
pseudo-boolean approach for computing the exact breakpoint distance between
two genomes in presence of duplications for both the exemplar and maximum
matching methods. Furthermore, we show strong evidence that a fast and simple
heuristic based on iteratively finding longest common subsequences provides very
good results on our dataset of γ-Proteobacteria.

This paper is organized as follows. In Section 2, we present some preliminaries
and definitions. We focus in Section 3 on the problem of finding the minimum
number of breakpoints under the two models and we give a pseudo-boolean
program together with some reduction rules. Section 4 is devoted to experimental
results on a dataset of γ-Proteobacteria.

2 Preliminaries

From an algorithmic perspective, a unichromosomal genome is a signed sequence
over a finite alphabet, referred hereafter as the alphabet of gene families. Each
element of the sequence is called a gene. DNA has two strands, and genes on a
genome have an orientation that reflects the strand of the genes. We represent
the order and directions of the genes on each genome as a sequence of signed

18 S. Angibaud et al.

elements, i.e., elements with signs “+” and “−”. Let G0 and G1 be two genomes.
For each x ∈ {0, 1}, we denote the label at position i in Gx by Gx[i], 1 ≤ i ≤ nx,
and we write nx for the number of genes in genome Gx and occx(g, i, j) for the
number of genes g (and −g) in Gx between positions i and j, 1 ≤ i ≤ j ≤ nx.
To simplify notations, we abbreviate occx(g, 1, nx) to occx(g).

In order to deal with the inherent ambiguity of duplicated genes, we now
precisely define what is a matching between two genomes. Roughly speaking,
a matching between two genomes can be seen as a way to describe a putative
assignment of orthologous pairs of genes between the two genomes (see for ex-
ample [11]). A matching M between genomes G0 and G1 is a set of pairwise
disjoint pairs (G0[i], G1[j]), where G0[i] and G1[j] belong to the same gene fam-
ily regardless of the sign, i.e., |G0[i]| = |G1[j]|. Genes of G0 and G1 that belong
to a pair of the matching M are said to be saturated by M, or M-saturated
for short. A matching M between G0 and G1 is said to be maximum if for any
gene family, there are no two genes of this family that are unmatched for M and
belong to G0 and G1, respectively.

The above definition allows us a large degree of freedom in the choice of the
matching between two genomes. Two types of matching are usually considered
and specify the underlying model to focus on for computing the desired genomic
distance. In the exemplar model, the matching M is required to saturate exactly
one gene of each gene family, i.e., the size of the matching is the number of
gene families. In the maximum matching model, the matching M is required to
saturate as many genes of any gene family as possible, i.e., M is a matching of
maximum cardinality. Let M be any matching between G0 and G1 that fulfills
the requirements of a given model (exemplar or maximum matching). By first
deleting non-saturated genes and next renaming genes in G0 and G1 according to
the matching M, we may now assume that both G0 and G1 are duplication-free,
i.e. G1 is a signed permutation of G0. We call the resulting genomes M-pruned.

Let G0 and G1 be two duplication-free genomes of size n. Without loss of gen-
erality, we may assume that G0 is the identity permutation, i.e., G0 = 1 2 . . . n.
We say that there is a breakpoint after gene G0[i], 1 ≤ i < n, in G0 if neither G0[i]
and G0[i + 1] nor −G0[i + 1] and −G0[i] are consecutive genes in G1, otherwise
we say that there is an adjacency after gene G0[i]. For example, if G0 = 1 2 3 4 5
and G1 = 1 − 3 − 2 4 5, then we have a breakpoint in G0 after genes 1 and 3
(and hence we have an adjacency in G0 after genes 2 and 4).

Let G0 and G1 be two genomes and M be a matching under any model
(exemplar or maximum matching) between G0 and G1. We define AM(G0, G1)
and BM(G0, G1) to be the number of adjacencies and the number of breakpoints
between the two M-pruned genomes.

We are now in position to formally define the optimization problem we are
interested in. Given two genomes G0 and G1 and a model (exemplar or maximum
matching), find a matching M between G0 and G1 that fulfills the requirements
of the model such that the number of breakpoints between the two M-pruned
genomes is as small as possible.

A Pseudo-boolean Programming Approach 19

3 An Exact Algorithm

3.1 Pseudo-boolean Problem

Minimizing the number of breakpoints between two genomes with duplications
is an NP–hard problem under the exemplar model even when occ0(g) = 1 for
all genes g in G0 and occ1(g) ≤ 2 for all genes g in G1 [8]. Consequently, the
NP-hardness also holds under the maximum matching model.

The exact algorithms we define in this section attempt to take advantage
of the existing solvers, and more precisely of the linear pseudo-boolean solvers,
which are a generalization of the SAT solvers. To this end, we have to express our
problem (with its two variants, according to the exemplar or maximum matching
model) as a linear pseudo-boolean problem (or LPB problem), i.e. as a linear
program [17] whose variables take 0 or 1 values. A number of generalizations of
Sat solvers to LPB solvers have been proposed (Pueblo [18], Galena [9], OPBDP
[3] and more). We decided to use for our tests the minisat+ LPB solver [12]
because of its good results during PB evaluation 2005 (special track of the Sat

Competition 2005).
Instead of directly writing a program that minimizes the number of break-

points, we chose to write the complementary program which consists in maxi-
mizing the number of adjacencies between the two given genomes. There are two
reasons for this choice. First, the constraints are simpler and less numerous in
this latter case ; moreover, experimental tests moreover showed that the running
time of our program is noticeably better by focusing on adjacencies. Second, it
is easy to notice that minimizing the number of breakpoints and maximizing
the number of adjacencies are equivalent problems under both the exemplar and
maximum matching models. Indeed, according to the above notations, given a
matching M between two genomes G0 and G1 we have:

BM(G0, G1) + AM(G0, G1) = |M| − 1. (1)

For the exemplar and maximum matching models, all the matchings M satisfying
the model have the same size, and hence BM(G0, G1)+AM(G0, G1) is a constant.
Therefore, maximizing AM(G0, G1) is equivalent to minimizing BM(G0, G1).

3.2 Maximizing the Number of Adjacencies

The LPB program we propose considers two genomes with duplications and per-
forms an M-pruning which maximizes the number of adjacencies according to
a specified model (exemplar or maximum matching). As discussed above, the
resulting matching also minimizes the number of breakpoints between the two
genomes. The LPB program, Program Breakpoint-Maximum-Matching, for the
maximum matching model is given in Figure 1. The exemplar variant is easily
obtained by performing only a few changes that are discussed subsequently.

Program Breakpoint-Maximum-Matching considers two genomes G0 and G1

of respective lengths n0 and n1. The objective function, the variables and the
constraints are briefly discussed hereafter.

20 S. Angibaud et al.

Program Breakpoint-Maximum-Matching

Objective :
Maximize

∑
0≤i<n0

∑
i<j≤n0

∑
0≤k<n1

∑
k<�≤n1

d(i, j, k, �)

Constraints :
(C.01) ∀ 1 ≤ i ≤ n0,

∑
1≤k≤n1, |G0[i]|=|G1[k]|

a(i, k) = b0(i)

∀ 1 ≤ k ≤ n1,
∑

1≤i≤n0 , |G0[i]|=|G1[k]|
a(i, k) = b1(k)

(C.02) ∀ 0 ≤ x ≤ 1, ∀ g ∈ G,
∑

1≤i≤nx, |Gx[i]|=|g|
bx(i) = min(occ0(g), occ1(g))

(C.03) ∀ 0 ≤ x ≤ 1, ∀ 1 ≤ i ≤ j − 1 < nx, cx(i, j) +
∑

i<p<j

bx(p) ≥ 1

(C.04) ∀ 0 ≤ x ≤ 1, ∀ 1 ≤ i < p < j ≤ nx, cx(i, j) + bx(p) ≤ 1

(C.05) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < � ≤ n1,
such that G0[i] = G1[k] and G0[j] = G1[�],
a(i, k) + a(j, �) + c0(i, j) + c1(k, �) − d(i, j, k, �) ≤ 3

(C.06) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < � ≤ n1,
such that G0[i] = G1[k] and G0[j] = G1[�],
a(i, k) − d(i, j, k, �) ≥ 0
a(j, �) − d(i, j, k, �) ≥ 0
c0(i, j) − d(i, j, k, �) ≥ 0
c1(k, �) − d(i, j, k, �) ≥ 0

(C.07) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < � ≤ n1,
such that G0[i] = −G1[�] and G0[j] = −G1[k],
a(i, �) + a(j, k) + c0(i, j) + c1(k, �) − d(i, j, k, �) ≤ 3

(C.08) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < � ≤ n1,
such that G0[i] = −G1[�] and G0[j] = −G1[k],
a(i, �) − d(i, j, k, �) ≥ 0
a(j, k) − d(i, j, k, �) ≥ 0
c0(i, j) − d(i, j, k, �) ≥ 0
c1(k, �) − d(i, j, k, �) ≥ 0

(C.09) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < � ≤ n1,
such that {|G0[i]|, |G0[j]|} �= {|G1[k]|, |G1[�]|} or G0[i] − G0[j] �= G1[k] −

G1[�],
d(i, j, k, �) = 0

(C.10) ∀ 1 ≤ i < j ≤ n0,∑
1≤k<n1

∑
k<�≤n1

d(i, j, k, �) ≤ 1

Domains :
∀ x ∈ {0, 1}, ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < � ≤ n1,

a(i, k), bx(i), cx(i, k), d(i, j, k, �) ∈ {0, 1}

Fig. 1. Program Breakpoint-Maximum-Matching for finding the maximum number of
adjacencies between two genomes under the maximum matching model

A Pseudo-boolean Programming Approach 21

Variables

• Variables a(i, k), 1 ≤ i ≤ n0 and 1 ≤ k ≤ n1, define a matching M: ai,k = 1
if and only if the gene at position i in G0 is matched with the gene at position
k in G1 in M.

• Variables bx(i), x ∈ {0, 1} and 1 ≤ i ≤ nx, represent the M-saturated genes:
bx(i) = 1 if and only if the gene at position i in Gx is saturated by the
matching M. Clearly,

∑
1≤i≤n0

b0(i) =
∑

1≤k≤n1
b1(k), and this is precisely

the size of the matching M.
• Variables cx(i, j), x ∈ {0, 1} and 1 ≤ i < j ≤ nx, represent consecutive

genes according to the matching M: cx(i, j) = 1 if and only if the genes at
positions i, j in Gx are saturated by M and no gene at position p, i < p < j,
is saturated by M.

• Variables d(i, j, k, �), 1 ≤ i < j ≤ n0 and 1 ≤ k < � ≤ n1, represent
adjacencies according to the matching M: d(i, j, k, �) = 1 if and only if (i)
either (G0[i], G1[k]) and (G0[j], G1[�]) are two edges of M, or (G0[i], G1[�])
and (G0[j], G1[k]) are two edges of M, (ii) G0[i] and G0[j] are consecutive
in G0 according to M, (iii) G1[k] and G1[�] are consecutive in G1 according
to M.

Objective function
The objective of Program Breakpoint-Maximum-Matching is to maximize the
number of adjacencies between the two considered genomes. This objective re-
duces in our model to maximizing the sum of all variables d(i, j, k, �).

Constraints
Assume x ∈ {0, 1}, 1 ≤ i < j ≤ n0 and 1 ≤ k < � ≤ n1.

• Constraint (C.01) ensures that each gene of G0 and of G1 is matched at
most once, i.e., b0(i) = 1 (resp. b1(k) = 1) if an only if gene i (resp. k)
is matched in G0 (resp. G1) ; see Figure 2 for an illustration. Moreover,
the matching is possible only between genes in the same family. It is worth
noticing here that we do not specifically ask that a(i, k) = 0 when i and k
concern genes belonging to different families. This is simply not necessary.

• Constraint (C.02) defines the model (i.e. the maximum matching model,
in this case). For each gene family g, one must have a single matched gene
for the exemplar model and min(occ0(g), occ1(g)) matched genes for the
maximum matching model (see Figure 2).

• Constraints in (C.03) and (C.04) express the definition of consecutive
genes, thus fixing the values of the variables cx. The variable cx(i, j) is equal
to 1 if and only if there exists no p such that i < p < j and bx(p) = 1. Again,
it is worth noticing that the constraints do not force the variables cx(i, j) to
have exactly the values we intuitively wish according to the abovementioned
interpretation. Here, we accept that cx(i, j) = 1 even if the gene at position
i or j is not matched. However, this will pose no problem in the sequel.

• Constraints in (C.05) to (C.10) define variables d. In the case where G0[i] =
G1[k] and G0[j] = G1[�], constraints (C.05) and (C.06) ensure that we have

22 S. Angibaud et al.

d(i, j, k, �) = 1 if and only if all variables a(i, k), a(j, �), c0(i, j) and c1(k, �)
are equal to 1. In the case where G0[i] = −G1[�] and G0[j] = −G1[k], con-
straints (C.07) and (C.08) ensure that we have d(i, j, k, �) = 1 if and only
if all variables a(i, �), a(j, k), c0(i, j) and c1(k, �) are equal to 1. Constraint
(C.09) fixes the variable d(i, j, k, �) to 0 if none of the two cases above
holds. Constraint (C.10) requires to have at most one adjacency for every
pair (i, j). See Figure 3 for a simple illustration.

Genome G0

G0[1] G0[2] G0[i − 1] G0[i] G0[i + 1] G0[n0]

Genome G1

G1[1] G1[2] G1[k1] G1[kj] G1[kp] G1[n1]

|G0[i]| = |G1[k1]|

|G0[i]| = |G1[kj]|

|G0[i]| = |G1[kp]|

a(i, k1) = 0

a(i, kj) = 1

a(i, kp) = 0

b0(i) = 1

b1(k1) ∈ {0, 1} b1(kj) = 1 b1(kp) ∈ {0, 1}

b1(k1) + . . . + b1(kj) + . . . + b1(kp) = min(occ0(|G0[i]|), occ1(|G0[i]|)

Fig. 2. Illustration of the constraints on variable b0(i), 1 ≤ i ≤ n0. If gene G0[i] appears
in positions k1 < k2 < . . . < kp in G1 and gene G0[i] is mapped to gene G1[kj] in the
solution mapping, then (i) a(i, kj) = 1, i.e., gene G0[i] is mapped to gene G1[kj], (ii)
a(i, kq) = 0 for 1 ≤ q ≤ p and q �= j, i.e., gene G0[i] is mapped to only one gene in G1,
(iii) b0(i) = 1, i.e., gene G0[i] is mapped to a gene of G1 and (iv) b1(kj) = 1, i.e., gene
G1[kj] is mapped to a gene of G0. Observe that one may have in addition b1(kq) = 1
for some 1 ≤ q ≤ p and q �= j if min(occ0(|G0[i]|), occ1(|G0[i]|) ≥ 1 (this observation is
however no longer valid for the exemplar model).

Program Breakpoint-Maximum-Matching has O((n0n1)2) constraints and
O((n0n1)2) variables, which could result in a time-consuming computation. Sev-
eral simple rules have been used in order to speed-up the execution, some of
which help to reduce the number of variables and constraints. They are dis-
cussed in the next subsection.

3.3 Speeding-Up the Program

We briefly describe in this section some rules for speeding-up the pseudo-boolean
program.

Pre-processing the genomes. The genomes are pairwise pre-processed to delete all
genes that do not appear in both genomes. For the exemplar model, consecutive

A Pseudo-boolean Programming Approach 23

d(i↪ j↪ k↪) = 1

Genome G0

G0[1] G0[i − 1] G0[i] G0[i + 1] G0[j − 1] G0[j] G0[j + 1] G0[n0]

Genome G1

G1[1] G1[k − 1]G1[k]G1[k + 1] G1[− 1] G1[] G1[+ 1] G1[n1]

G0[i] = G1[k]
a(i↪ k) = 1

G0[j] = G1[]
a(j↪) = 1

b0(p) = 0
∀ i < p < j

b0(i) = 1 b0(j) = 1

b1(q) = 0
∀ k < q <

b0(k) = 1 b0() = 1

c0(i↪ j) = 1

c1(k↪) = 1

Fig. 3. Illustration of the constraints on variable d(i, j, k, �), 1 ≤ i < j ≤ n0 and
1 ≤ k < � ≤ n1, for G0[i] = G1[k] and G0[j] = G1[�]. The two genes G0[i] and
G[j] are adjacent according to a solution mapping if there exist two genes G1[k] and
G1[�], G0[i] = G1[k] and G0[j] = G1[�], such that (i) G0[i] is mapped to G1[k], i.e.,
a(i, k) = 1, (ii) G0[j] is mapped to G1[�], i.e., a(j, �) = 1, (iii) no gene between G0[i]
and G0[j] is mapped to a gene of G1, i.e., c0(i, j) = 1 and (iv) no gene between G1[k]
and G1[�] is mapped to a gene of G1, i.e., c1(k, �) = 1. The above situation reduces in
our modelization to d(i, j, k, �) = 1.

occurrences of a gene (with the same sign) are reduced to only one occurrence to
this gene. For the γ-proteobacteria benchmark set, the average size of a genome
reduces from 3000 to 1300.

Reducing the number of variables and constraints. Due to space constraints we
only list few easy reduction rules. For non-duplicated genes, i.e., occ0(g) =
occ1(g) = 1, the corresponding variable ai,k is set directly to 1, as well as the two
variables b0(i) and b1(k). Also, if two non-duplicated genes occur consecutively
or in reverse order with opposite signs, the corresponding variable d() is set
directly to 1 and the related constraints are discarded. For the exemplar model,
we must have exactly one occurrence of each gene in each genome, and hence if
the same gene occurs, say in G0, at positions i and j, then the corresponding
variable d() is set directly to 0 and the related constraints are discarded. If for
two genes, say occurring at positions i and j in G0 and k and � in G1, at least
one gene occurring between position i and j in G0 or k and � in G1 must be
saturated in any matching M, then the corresponding variable d(i, j, k, �) is set
directly to 0 and the related constraints are discarded (details omitted).

24 S. Angibaud et al.

Adding redundancy. While adding redundancy to a pseudo-boolean program is
certainly useless from a correctness point of view, it can however have a major
impact on the practical performance of the programs. For example, Program
Breakpoint-Maximum-Matching contains some redundant constraints ((C.06),
(C.08) and (C.10)) that significantly improved the running time of the program.

4 Experimental Results

Thanks to the LPB program discussed previously, as well as formula (1), we are
now able to determine the minimum number of breakpoints between pairs of
genomes that contain duplicates. This minimum number of breakpoints will be
computed according to the two above mentioned models, i.e. the exemplar and
maximum matching models.

To this end, we used a dataset of γ-proteobacteria genomes, originally studied
in [13], and exploited several times since then. This dataset is composed of twelve
complete linear genomes of γ-Proteobacteria out of the thirteen originally studied
in [13]. Indeed, the thirteenth genome (V.cholerae) was not considered, since it is
composed of two chromosomes, and hence does not fit in the model we considered
here for representing genomes. More precisely, the dataset is composed of the
genomes of the following species:

– Buchnera aphidicola APS (Baphi, Genbank accession number NC 002528),
– Escherichia coli K12 (Ecoli, NC 000913),
– Haemophilus influenzae Rd (Haein, NC 000907),
– Pseudomonas aeruginosa PA01 (Paeru, NC 002516),
– Pasteurella multocida Pm70 (Pmult, NC 002663),
– Salmonella typhimurium LT2 (Salty, NC 003197),
– Xanthomonas axonopodis pv. citri 306 (Xaxon, NC 003919),
– Xanthomonas campestris (Xcamp, NC 0 03902),
– Xylella fastidiosa 9a5c (Xfast, NC 002488),
– Yersinia pestis CO 92 (Ypest-CO92, NC 003143),
– Yersinia pestis KIM5 P12 (Ypest-KIM, NC 004088) and
– Wigglesworthia glossinidia brevipalpis (Wglos, NC 004344).

The computation of a partition of the complete set of genes into gene families,
where each family is supposed to represent a group of homologous genes, is taken
from [5] (this partition was actually provided to these authors by Lerat [13]). It
should be noted that in average, 11% of duplicated genes are present in these
genomes.

The LPB engine is powered by minisat+ [12]. Computations were carried
out on a Quadri Intel(R) Xeon(TM) CPU 3.00 GHz with 16Gb of memory
running under Linux. Under the maximum matching model, minisat+ runs our
program Breakpoint-Maximum-Matching (implemented using the speeding-up
rules described in Section 3.3) in less than 10s for 56 out of the 66 possible pairs
of genomes, and in several minutes for the remaining 10 pairs. The results are
provided in Table 1.

A Pseudo-boolean Programming Approach 25

Table 1. Exact number of breakpoints for the maximum matching model

Genomes Number of Breakpoints (maximum matching model)
Ecoli 156
Haein 270 665
Paeru 240 1082 615
Pmult 259 703 525 681
Salty 158 277 676 1091 704
Wglos 170 194 277 260 270 192
Xaxon 226 842 533 1016 557 854 269
Xcamp 226 845 530 1012 555 854 268 181
Xfast 236 564 468 572 481 569 272 400 404

Ypest-co92 170 596 649 990 671 591 193 760 755 542
Ypest-kim 176 607 653 1004 676 606 197 760 749 545 59

B
ap

h
i

E
coli

H
aein

P
aeru

P
m

u
lt

S
alty

W
glos

X
ax

on

X
cam

p
X

fast

Y
p
est-co92

The first conclusion that can be drawn from these results is the following: the
pseudo-boolean approach we have considered here is a good approach for com-
puting the minimum number of breakpoints for the maximum matching model,
since all the results have been obtained within a few minutes. However, as al-
ready observed in [1] for maximizing the number of common intervals between
two genomes, we notice that the exemplar model is the main bottleneck of our
approach. Indeed, for the exemplar model, only 49 out of 66 (that is about 74%)
results have been obtained within a few minutes (we stopped the computation
of the 17 remaining cases after a few days). We still have no formal explanation
for this surprising and counter-intuitive fact. The 49 results we have obtained
are given in Table 2.

Besides the fact that computing the minimum number of breakpoints under
the maximum matching model proves to be feasible under our pseudo-boolean ap-
proach, we find interesting to note that we have a sufficient number of results in
both the maximum matching and the exemplar models to test the absolute accu-
racy of possible heuristics for these two problems. Indeed, if one wishes to obtain
fast (though not optimal) results by using a given heuristic, it is relevant to know
how tight this heuristic is. We carried out this study, focusing on two heuristics
(one for the maximum matching model, the other for the exemplar model), that
are both based on iteratively choosing a Longest Common Substring (LCS).

Maximum Matching Model. In [14], the authors introduced an heuristic that
aimed at computing a matching between two genomes. This heuristic is a greedy
algorithm based on the notion of LCS. Let G0 and G1 be two genomes: an LCS
of (G0, G1) is a longest common word S of G0 and G1, up to a complete reversal.
The idea of the greedy algorithm is to match, at each iteration, all the genes

26 S. Angibaud et al.

Table 2. Exact number of breakpoints for the exemplar model (49 instances out of 66)

Genomes Number of Breakpoints (exemplar model)
Ecoli 152
Haein 265 610
Paeru 232 550
Pmult 254 622 592
Salty 154 612 622
Wglos 168 183 267 248 262 181
Xaxon 222 675 473 495 684 261
Xcamp 222 678 473 495 260
Xfast 231 491 424 499 436 497 264

Ypest-co92 166 597 597 182 624 620 473
Ypest-kim 172 598 601 186 624 618 477

B
ap

h
i

E
coli

H
aein

P
aeru

P
m

u
lt

S
alty

W
glos

X
ax

on

X
cam

p
X

fast

Y
p
est-co92

that are in an LCS. If there are several LCS, one is chosen arbitrarily. In [1], we
improved this heuristic in the following way: at each iteration, not only we match
an LCS, but we also remove each unmatched gene of a genome, for which there is
no unmatched gene of same family in the other genome. These rules imply that
the resulting matching is a maximum matching. We call this heuristic IILCS MM.

Exemplar Model. For the exemplar model, we use the same strategy (iteratively
match the genes of an LCS), except that in this case we must make sure that
only one gene from each family is matched on each genome. Therefore, at each
iteration, and for each gene g present in the LCS (and thus kept in the match-
ing), we remove all the other occurrences of g in both genomes. Let us call this
heuristic IILCS EX.

We have tested both IILCS MM and IILCS EX under, respectively, the maxi-
mum matching and exemplar models. Current results are given in Tables 1
to 4 (see http://www.lri.fr/~thevenin/Breakpoint/#Some results for up-
to-date results). The two heuristics are quite fast and one can obtain all results
for IILCS MM and IILC EX within 20 minutes on a regular desktop computer.
For the maximum matching model, Heuristic IILCS MM provides results that are
on average 99.11% of the optimal number of breakpoints, ranging from 95.51%
to 100%. We actually note that in 14 out of the 66 cases, IILCS MM returns the
optimal value. Concerning IILCS EX, the average, obtained over the 49 instances
for which we know the optimal result, is 96.88%, ranging from 94.38% to 99.10%.

We thus conclude that both heuristics IILCS MM and IILCS EX, despite be-
ing extremely simple and fast, appear to be very good on the dataset we studied.

A Pseudo-boolean Programming Approach 27

Table 3. Number of breakpoints for the maximum matching model by IILCS MM

Number of Breakpoints (maximum matching model)
Genomes for Heuristic IILCS MM

Ecoli 157
Haein 270 670
Paeru 241 1097 619
Pmult 259 705 529 684
Salty 158 290 680 1101 708
Wglos 171 195 277 262 270 193
Xaxon 226 848 533 1023 560 863 269
Xcamp 226 851 532 1023 559 860 269 185
Xfast 236 569 468 575 481 571 272 406 408

Ypest-co92 173 618 655 1007 678 609 195 767 766 549
Ypest-kim 178 628 660 1019 684 626 198 766 758 550 59

B
ap

h
i

E
coli

H
aein

P
aeru

P
m

u
lt

S
alty

W
glos

X
ax

on

X
cam

p
X

fast

Y
p
est-co92

Table 4. Number of breakpoints for the exemplar model by IILCS EX

Number of Breakpoints (exemplar model)
Genomes for Heuristic IILCS EX

Ecoli 155
Haein 268 636
Paeru 238 888 571
Pmult 258 657 509 619
Salty 156 175 641 908 659
Wglos 170 189 272 254 266 188
Xaxon 224 712 494 844 516 722 264
Xcamp 224 716 492 841 516 720 263 126
Xfast 234 511 443 517 456 514 268 384 383

Ypest-co92 171 482 619 829 620 491 188 650 648 490
Ypest-kim 176 485 624 827 623 492 191 649 644 495 34

B
ap

h
i

E
coli

H
aein

P
aeru

P
m

u
lt

S
alty

W
glos

X
ax

on

X
cam

p
X

fast

Y
p
est-co92

In particular, for the exemplar model, since our pseudo-boolean approach seems
to reach its limits for some instances, it could be convenient to compute those
remaining instances using Heuristic IILCS EX.

28 S. Angibaud et al.

5 Conclusion

In this paper, we presented a method that helps speeding-up computations of
exact results for comparing whole genomes containing duplicates. This method,
which makes use of pseudo-boolean programming, has been introduced in [1] for
computing the maximum number of common intervals between two genomes,
and can be used for several (dis)similarity measures. In this paper, we used
this method for computing the minimum number of breakpoints between two
genomes, and developed pseudo-boolean programs for both the maximum match-
ing and exemplar models. Experiments were undertaken on a dataset of γ-
Proteobacteria, showing the validity of our approach, since all the results (resp.
49 results out of 66) have been obtained in a limited amount of time in the max-
imum matching model (resp. exemplar model). Moreover, these results allow us
to state that both the IILCS MM and the IILCS EX heuristics provide excellent re-
sults on this dataset, hence showing their validity and robustness. On the whole,
these preliminary results are very encouraging.

There is still a great amount of work to be done. For instance:

– Implementing and testing the maximum matching and the exemplar models,
for several other (dis)similarity measures,

– For each case, determining strong and relevant rules for speeding-up the
process by avoiding the generation of a large number clauses and variables
(a pre-processing step that should not be underestimated),

– Obtaining exact results for each of these models and measures, and for dif-
ferent datasets, that could be later used as benchmarks in order to validate
(or not) possible heuristics, and

– Implementing and testing an intermediate model between the maximum
matching and the exemplar models, in which one must match at least one
gene of each family in each genome.

References

1. Angibaud, S., Fertin, G., Rusu, I., Vialette, S.: How pseudo-boolean program-
ming can help genome rearrangement distance computation. In: Bourque, G., El-
Mabrouk, N. (eds.) Comparative Genomics. LNCS (LNBI), vol. 4205, pp. 75–86.
Springer, Heidelberg (2006)

2. Angibaud, S., Fertin, G., Rusu, I., Vialette, S.: A general framework for computing
rearrangement distances between genomes with duplicates. Journal of Computa-
tional Biology 14(4), 379–393 (2007)

3. Barth, P.: A Davis-Putnam based enumeration algorithm for linear pseudo-boolean
optimization. Technical Report MPI-I-95-2-003, Max Planck Institut Informatik,
pages 13 (2005)

4. Blin, G., Chauve, C., Fertin, G.: The breakpoint distance for signed sequences. In:
Proc. 1st Algorithms and Computational Methods for Biochemical and Evolution-
ary Networks (Comp. Bio. Nets.), pp. 3–16. KCL publications (2004)

5. Blin, G., Chauve, C., Fertin, G.: Genes order and phylogenetic reconstruction:
Application to γ-proteobacteria. In: McLysaght, A., Huson, D.H. (eds.) RECOMB
2005. LNCS (LNBI), vol. 3678, pp. 11–20. Springer, Heidelberg (2005)

A Pseudo-boolean Programming Approach 29

6. Blin, G., Rizzi, R.: Conserved intervals distance computation between non-trivial
genomes. In: Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 22–31. Springer,
Heidelberg (2005)

7. Bourque, G., Yacef, Y., El-Mabrouk, N.: Maximizing synteny blocks to identify
ancestral homologs. In: McLysaght, A., Huson, D.H. (eds.) RECOMB 2005. LNCS
(LNBI), vol. 3678, pp. 21–35. Springer, Heidelberg (2005)

8. Bryant, D.: The complexity of calculating exemplar distances. In: Comparative
Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map
Alignment, and the Evolution of Gene Families, pp. 207–212. Kluwer Academic
Publishers, Dordrecht (2000)

9. Chai, D., Kuehlmann, A.: A fast pseudo-boolean constraint solver. In: Proc. 40th
ACM IEEE Conference on Design Automation, pp. 830–835. ACM Press, New
York (2003)

10. Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Genomes containing duplicates are
hard to compare. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra,
J.J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 783–790. Springer, Heidelberg (2006)

11. Chen, X., Zheng, J., Fu, Z., Nan, P., Zhong, Y., Lonardi, S., Jiang, T.: Assign-
ment of orthologous genes via genome rearrangement. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 2(4), 302–315 (2005)

12. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. Journal
on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

13. Lerat, E., Daubin, V., Moran, N.A.: From gene tree to organismal phylogeny in
prokaryotes: the case of γ-proteobacteria. PLoS Biology 1(1), 101–109 (2003)

14. Marron, M., Swenson, K.M., Moret, B.M.E.: Genomic distances under deletions
and insertions. Theoretical Computer Science 325(3), 347–360 (2004)

15. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–
917 (1999)

16. Sankoff, D., Haque, L.: Power boosts for cluster tests. In: McLysaght, A., Hu-
son, D.H. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3678, pp. 11–20. Springer,
Heidelberg (2005)

17. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley and Sons,
Chichester (1998)

18. Sheini, H.M., Sakallah, K.A.: Pueblo: A hybrid pseudo-boolean SAT solver. Journal
on Satisfiability, Boolean Modeling and Computation 2, 165–189 (2006)

Improving Inversion Median Computation Using
Commuting Reversals and Cycle Information

William Arndt and Jijun Tang�

Department of Computer Science and Engineering
University of South Carolina
Columbia, SC 29208, USA

jtang@cse.sc.edu

Abstract. In the past decade, genome rearrangements have attracted increasing
attention from both biologists and computer scientists as a new type of data for phy-
logenetic analysis. Methods for reconstructing phylogeny from genome rearrange-
ments include distance-based methods, MCMC methods and direct optimization
methods. The latter, pioneered by Sankoff and extended with the software suite
GRAPPA and MGR, is the most accurate approach, but is very limited due to the dif-
ficulty of its scoring procedure–it must solve multiple instances of median problem
to compute the score of a given tree. The median problem is known to be NP-hard
and all existing solvers are extremely slow when the genomes are distant. In this
paper, we present a new inversion median heuristic for unichromisomal genomes.
The new method works by applying sets of reversals in a batch where all such re-
versals both commute and do not break the cycle of any other. Our testing using
simulated datasets shows that this method is much faster than the leading solver
for difficult datasets with only a slight accuracy penalty, yet retains better accuracy
than other heuristics with comparable speed. This new method will dramatically
increase the speed of current direct optimization methods and enables us to extend
the range of their applicability to organellar and small nuclear genomes with more
than 50 inversions along each edge. As a further improvement, this new method
can very quickly produce reasonable solutions to problems with hundreds of genes.

1 Introduction

Because of the advent of high-throughput sequencing and the consequent reduction in
costs, we are seeing an explosion in the amount of genomic data of all types. In partic-
ular, the availability of fully sequenced and well annotated genomes allows us to move
beyond the mere sequence level in the study of genomic evolution. Once a genome has
been annotated to the point where gene homologs can be identified, each gene family can
be assigned a unique integer and each chromosome represented by an ordering (a permu-
tation) of signed integers, where the sign indicates the strand. Rearrangement of genes
under inversion, transposition, and other operations such as duplications, deletions and
insertions, then amount to rearrangements of these orderings. Such rearrangements are
known to be an important evolutionary mechanism [11] and their use in reconstructing
phylogenies has been studied intensely since the pioneering papers of Sankoff [5,24].

� Corresponding author.

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 30–44, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Improving Inversion Median Computation 31

Biologists have embraced this new source of data in their phylogenetic work [11,19,22]
and also in comparative genomics [21], while computer scientists are slowly solving
the difficult problems posed by the manipulations of these gene orders [18]. During the
past several years, computer scientists have been able to make substantial progress in
genome rearrangement research: with the solution for inversion distance [13] and inver-
sion median [10], we were able to estimate phylogenies and ancestral genomes based
on inversions (the dominant events in organellar genomes).

There are several widely used methods for genome rearrangement analysis, including
neighbor-joining [23], GRAPPA [17], MGR [7] and Badger [15]. Using the later three gen-
erally will achieve better accuracy than using distance based methods such as neighbor-
joining. The main software packages for reconstructing the inversion (or breakpoint)
phylogeny are GRAPPA and MGR. Their basic optimization tool is an algorithm for com-
puting the inversion (or breakpoint) median of three genomes. However, using GRAPPA
and MGR to analyze organismal genomes with many events is extremely expensive, be-
cause the median computation takes time exponential in both the size of the genomes
and the distances among genomes. In this paper, we present a fast yet accurate heuris-
tic using commuting reversals to improve the inversion median computation for both
distant and large genomes. We will also provide some discussions regarding inversion
medians when the number of events approach saturation.

2 Backgrounds

2.1 Genome Rearrangements

We assume a reference set of n genes {g1,g2, · · · ,gn}, thus a unichromisomal genome
can be represented as a signed ordering of these genes, and each gene is given an ori-
entation that is either positive, written gi, or negative, written −gi. Genomes can evolve
through events including inversions, transpositions and transversions.

Let G be the genome with signed ordering of g1,g2, · · · ,gn. An inversion between
indices i and j (i ≤ j), transforms G to a new genome with linear ordering

g1,g2, · · · ,gi−1,−g j,−g j−1, · · · ,−gi,g j+1, · · · ,gn

A transposition on genome G acts on three indices i, j,k, with i ≤ j and k /∈ [i, j], picking
up the interval gi,gi+1, · · · ,g j and inserting it immediately after gk. Thus genome G is
replaced by (assume k > j):

g1, · · · ,gi−1,g j+1, · · · ,gk,gi,gi+1, · · · ,g j,gk+1, · · · ,gn

An transversion is a transposition followed by an inversion of the transposed subse-
quence; it is also called an inverted transposition.

2.2 Distance Computation

Given two genomes G1 and G2, we define the edit distance d(G1,G2) as the minimum
number of events required to transform one genome into the other. The breakpoint dis-
tance [24] is not a direct evolutionary distance measurement. A breakpoint in G1 is

32 W. Arndt and J. Tang

defined as an ordered pair of genes (gi,g j) such that gi and g j is adjacent in G1 but
not in G2. The breakpoint distance is simply the number of breakpoints in G1 relative
to G2. When only inversions are allowed, the edit distance is the inversion distance.
Hannenhalli and Pevzner [13] developed a mathematical and computational framework
for signed gene-orders and provided a polynomial-time algorithm to compute the edit
distance between two signed gene-orders under inversions; Bader et al. [1] later showed
that this edit distance can be computed in linear time. However, computing the inversion
distance is NP-hard in the unsigned case [9].

The HP algorithm is based on the breakpoint graph (Fig 1). We assume without loss
of generality that one permutation is the identity. We represent gene i by two vertices,
−i and +i, connected by an edge. The edge is oriented from +i to −i when gene i is
positive, but oriented in the reverse direction when it is negative. Two additional vertices
0 and n+1 are also added. These vertices can be connected with two sets of edges, one
for each genome. One set of edges, called desire edges, represent the identity genome
and is shown with dashed arcs in Fig 1. The other edges represent the current state of
the genome and are shown with solid lines; these are called reality edges. In both set of
edges, 0 always connects to −1 and n + 1 always connects to +n. The crucial concept
is that of alternating cycles in this graph, i.e., cycles of even length in which every odd
edge is a desire edge and every even one is a reality edge. Overlapping cycles in certain
configurations create structures known as hurdles, and a very unlikely configuration of
such hurdles can form a single fortress (please refer [13] for details). Hannenhalli and
Pevzner [13] proved that the inversion distance between two signed permutations of n
genes is given by

n − # cycles+ # hurdles+ (1 if fortress present, 0 otherwise)

+2

 4 3 −1−2

−2 −4 +4 −3 +3 +1 −1 50

Fig. 1. Breakpoint graph between genome (-2 4 3 -1) and the identity genome (1 2 3 4)

2.3 Sorting and Commuting Reversals

Almost all the distance computation methods return one (and only one) minimum sort-
ing sequence. Siepel [26] extended the HP theorem to find all sorting reversals, i.e., all
possible inversions that appear as the first step in the sorting. Fig. 2 gives one example
of sorting reversals: there are eight possible inversions that bring G2 one step closer
to G1 (the identity genome). This algorithm can be easily extended to enumerate all

Improving Inversion Median Computation 33

of a reversal

2 G :1−1 −2 −3 −4 −5
1 2 3 4 5

7

6

8

1 2 3 4 5

indicates start and end points

G :

Fig. 2. Eight sorting reversals that bring (-1 -2 -3 -4 -5) one step closer to (1 2 3 4 5)

minimum sorting sequences by identifying every sorting reversals at each step of the
sorting.

The concept of commuting reversals was introduced in [6] where the context was
sorting between two permutations using inversions. Two different sorting inversions
acting on the same permutation are defined to commute as follows: separate the per-
mutation integers into three sets: those integers which are only members of the first
inversion, those which are only members of the second, and those which are members
of both. The two sorting inversions commute if and only if one of these three sets is
empty. Commuting inversions have a desirable property that applying them to a permu-
tation will always obtain the same result no matter the order they are applied.

1 2 3 4 5 6
A

B

1 2 3 4 5 6
A

B

1 2 3 4 5 6
A

B

(a) (b) (c)
set only affected by A: [2, 3] set only affected by A: [5] set only affected by A: [2]
set only affected by B: [4, 5] set only affected by B: φ set only affected by B: [5]
set affected by A∩B: φ set affected by A∩B: [2, 3, 4] set affected by A∩B: [3, 4]

Fig. 3. Examples of commuting inversions (a and b) and non-commuting inversion (c)

2.4 Inversion Median Problem

Given three genomes (permutations) π1, π2, π3 and another genome π0, we define the
median score from π0 as d(π0,π1) + d(π0,π2) + d(π0,π3). The median problem on
three genomes is to find genome π0 that minimizes the median score between itself and
each of the three given genomes π1, π2, π3. We also define the perfect median score as⌈

d(π1,π2)+d(π1,π3)+d(π2,π3)
2

⌉
, which is the lower bound of the score for a median problem.

The median problem is NP-hard [8,20] even for simple distance definition such as
breakpoint distance. Seeking a median that minimizes the breakpoint distance can be
transformed into a special instance of the well-studied Traveling Salesperson Problem
[4], hence can be solved relatively efficiently. But in practice, the breakpoint median
is not effective—it is easy to obtain trivial solutions (where the median gene-order co-
incides with one of the leaves), hence is not as accurate as using inversion median for
genome rearrangement analysis [16].

34 W. Arndt and J. Tang

The inversion median problem is to find a median genome that minimizes the sum
of inversion distances on the three edges. Four inversion median solvers have been pro-
posed. Caprara’s solver [10] is based on an extension of the breakpoint graph, while that
developed by Siepel and Moret [25] runs a direct search. Both Caprara’s and Siepel’s
median solvers are exact and are included in GRAPPA. In practice, Caprara’s median
solver is faster when the genomes are not close.

Both MGR [7] and rEvoluzer [2] are heuristics, using similar approach: they both
seek good reversals that bring a genome closer to the ancestral genome. For three
genomes, the MGR algorithm evaluates all possible inversions for each of the three
genomes, identifying good reversals that bring a genome closer to the ancestral genome.
Since the ancestral genome is unknown, the algorithm chooses inversions which make
G1 closer to both G2 and G3 as good reversals. Thus the algorithm will iteratively carry
on good reversals in the three genomes until all three are transformed into an identical
genome, which is viewed as the most likely ancestral median. rEvoluzer improves
the MGR procedure by selecting inversions that cannot destroy any conserved intervals.
Although rEvoluzer achieves some speedup over GRAPPA, like MGR, the median gene
orders it obtained is not as good as those returned by GRAPPA [2].

All these median solvers become extremely slow for large and distant genomes. A
common speedup process used by all methods makes use of the concept of conserved
adjacency. A gene pair (x,y) is conserved adjacent if (x,y) or its inverse (−y,−x) is
present in all genomes as consecutive elements [14]. A block of k adjacent genes can be
replaced by a new gene and the total number of genes reduces by k − 1 [7]. This con-
densation procedure is very effective when the genomes are close: a median of genomes
with 1,000 genes and 50 inversions per edge can be condensed to ∼ 200 genes only. In
practice, given the smallest edge length e and number of genes n, we found the ratio e

n
is a good indicator about the difficulty of inversion median problem. Siepel’s median
solver cannot handle datasets with e

n > 15%, and its search approach limits it to small
genomes (< 100 genes) as well. On the other hand, Caprara’s median solver will be
able to handle datasets with 1,000 genes for e

n ≤ 20%.

3 Inversion Median Computation Using Commuting Reversals

We set out to improve the speed of inversion median computation with the goal that
the new median solver should have accuracy that is comparable to Caprara’s median
solver. The new algorithm is different from MGR and rEvoluzer in that it will conduct a
direct search from one of the known genomes, using sorting reversals to limit the search
space. Our algorithm also improves over Siepel’s method by using commuting reversals
in the set of sorting reversals from the start genome to both of the other two genomes.
Our new median solver will also report multiple solutions, a property lacking in almost
all existing methods.

3.1 A Naive Approach

Let us first present a naive approach. Suppose the three input permutations are π1, π2,
and π3, and assume all median scores are with respect to π1, π2, and π3. Define a

Improving Inversion Median Computation 35

recursive function which has input π1, π2, π3, and π4, where π4 is set as π1 when the
function is first called. In this function first obtain two sets of sorting reversals, set
α which contains sorting reversals from π4 to π2, and set β which contains sorting
reversals from π4 to π3. Let set γ be the intersection of α and β. Repeat the following
process until γ is empty: remove one inversion from γ and apply to π4 to obtain π′

4,
determine the median score of π′

4 and compare to the lowest median score seen so far
in the search. If the median score of π′

4 is less than or equal to the best-so-far, report the
score and π′

4. Call the recursive function with arguments π1, π2, π3, and π′
4.

Several concerns make this method undesirable. Primarily, the amount of computa-
tion required increases exponentially with both the number of inversions separating the
three permutations and the number of genes in each genome. Second, it can be shown
by exhaustively searching permutations against a small inversion median problem, that
a median permutation does not necessarily lie on a sorting path between two of the
three initial permutations; thus the presented naive approach cannot guarantee an opti-
mal solution because some and possibly all paths to medians would require that one or
more reversals which are not members of γ be chosen. We will not attempt to improve
this aspect of the naive method as doing so would require a large number of additional
inversions be considered in set γ with very little return on the massive amount of new
computation being performed.

The biggest problem of the naive approach is that it performs a large amount of
redundant computation by visiting the same permutation multiple times. This can be
reduced by using information about commuting reversals. Imagine a set of sorting re-
versals which sort π1 towards both π2 and π3. Select any pair of these reversals A and
B which occur along the path to a median. if reversals A and B do not commute, then
changing the order that A and B are applied affects the resulting permutation (Fig 3c);
if A and B commute (Fig 3a and Fig 3b) then the naive method will search the same
permutation at least twice, since both choices of ordering the application of A and B
result in the same permutation.

3.2 An Improved Algorithm

The above analysis leads to a method to speed up the search by removing a large por-
tion of this redundancy. Obtain from the set γ reversals with the additional property that
all pairs of inversions commute. This allows the order of applying these reversals to
be ignored; every permutation which can be reached by applying any number of these
commuting reversals can be enumerated and scored one time instead of enumerating
permutations by the paths which lead to them. If n is the number of commuting re-
versals, then 2n permutations can be reached, but the total number of paths to these
permutations is O(nn).

Which set of the 2n permutations should be chosen? We have experimented with several
methods:

– Brute force method which scores every 2n permutation and chooses the best median
score π′

4, with good results but an obvious time complexity drawback.
– A method which draws samples from the 2n permutations and chooses the best

median score among them. This approach reduces both the time required and the

36 W. Arndt and J. Tang

accuracy; in general the quality of the results are proportional to the fraction of the
space being searched.

– The simplest method of all, and surprisingly effective, is to apply all reversals in
the set, i.e., obtaining π′

4 from by applying all non-interfering reversals to π4. The
quality of this method depends on the ratio of the size of the permutation to the
size of the reversal set. This approach works well until the e

n ratio is 30 − 40%.
Beyond that point each search step normally increases the median score and tends
to converge with worse results than a trivial solution.

The previous example, where applying all commuting reversals results in a worse me-
dian score, demonstrates there is a more complex interaction between the application
of a single sorting reversal to a permutation and its influence on other sorting reversals.
This interference between sorting reversals comes from the breaking of cycles in the
breakpoint graphs of the problem instance. Imagine a breakpoint graph with one cycle
containing two sorting reversals that commute. Applying either of those sorting rever-
sals will alter the breakpoint graph to create two cycles. Afterwards, two possibilities
exist: either both of the reality edges of the second reversal will remain in the same
cycle, in which case this reversal will be a sorting reversal, or the reality edges of the
second reversal will be separated into different cycles, in which case it will no longer
be a sorting reversal. This line of thought leads to a concept similar to commuting re-
versals, only transferred to breakpoint graph cycle interactions.

3.3 Parallel and Perpendicular Sorting Reversals

We call a pair of sorting reversals parallel on a single breakpoint graph if they com-
mute, break reality edges in the same cycle of the breakpoint graph, and applying both
inversions to the permutation creates two additional cycles. On the other hand, a pair of
sorting reversals are perpendicular on a single breakpoint graph if they commute, break
reality edges in the same cycle of the breakpoint graph, and applying both inversions to
the permutation creates one additional cycle.

When multiple breakpoint graphs present, we also call a pair of reversals parallel if
in all such graphs the reality permutation is the same (the generalization that the desire
permutation is the identity is relaxed), both inversions sort each graph, and the inver-
sions are not perpendicular on any of the considered graphs. A pair of reversals are
perpendicular over multiple breakpoint graphs if in all such graphs the reality permuta-
tion is the same, the inversions sort each graph, and the inversions are perpendicular on
any of the graphs.

Theorem 1. Consider the breakpoint graph from π4 to π2, the breakpoint graph from
π4 to π3 and the set of commuting sorting inversions γ. Inversions can be removed from
the set until no two inversions are perpendicular over both graphs, and the result is
a set of sorting inversions which when applied to π4 in any order improve its median
score by an amount equal to the number of inversions which remain in γ.

Proof. Given set γ contains inversions which sort π4 towards both π2 and π3, that no pair
of these inversions are perpendicular, and that all pairs of inversions commute. We prove
the theorem by induction. As the inductive step, repeatedly remove any inversion from

Improving Inversion Median Computation 37

γ and apply it to π4. No pair of inversions in γ are perpendicular, so no previous choice
was possible which will affect the sorting property of the current inversion. The chosen
inversion is a sorting inversion to both targets, so d(π4,π1) will increase by 1, d(π4,π2)
and d(π4,π3) will both decrease by 1. During one inductive step the median score will
improve by 1 and the cardinality of γ will lower by one. In the base case, set γ is empty
and there are no additional inversions which will sort π4 towards both π2 and π3.

Fig. 4 describes a simple graph method to visualize the parallel and perpendicular inver-
sion properties. We first obtain the set of sorting inversions between two permutations,
but additionally save the cycle membership and order in which each reality edge appears
when transversing a cycle. For each cycle, in a ring, draw a break location node for each
reality edge in the breakpoint graph and label the node with the genes that appear on
each side of the edge, and draw an edge representing the desire edge to both of its neigh-
bors. For each sorting reversal which acts on two reality edges in the same cycle (not
inversions which merge hurdles or cut a hurdle or fortress), draw a cut chord connecting
both of the corresponding break location nodes in the ring. This chord corresponds to
the cut that divides the cycle into two smaller cycles when the inversion is applied, and
shows which break location nodes will remain in the same cycle and which will be sep-
arated. For every pair of inversions in the same cycle, if the cut chord for each intersect,
then this pair of inversions is perpendicular, otherwise, the inversions are parallel.

e

f

0

−1

2
−3

4

−5

−2

1

3
−4

5

6

f

a

b c

d

−1 −2 −3 −4 −5
a b c d e

Fig. 4. Graph representation of cycle interferences on a set of commuting reversals, genes 0 and
6 represent linear chromosome endpoints

A special case exists where two inversions share a break location node, as sometimes
such inversions will be parallel and sometimes perpendicular. The problem is that when
an inversion is applied it separates the two genes labeling a break location node and puts
one in each of the newly formed cycles, but different inversions make this decision in
different ways, depending on the layout of the permutation. We address this issue in the
implementation by treating any inversions which share a break location as perpendicu-
lar, with the drawback of sometimes removing inversions from γ which do not actually
need to be removed.

38 W. Arndt and J. Tang

3.4 The Final Algorithm

The overall heuristic of our new unichromosomal median solver is presented in Fig 5.
Several details worth mentioning. First, the choice of the start permutation has some im-
pact and our experiments show that using the permutation nearest to the center produces
the best median scores. Second, despite our efforts to prevent redundant computation, a
very large amount still occurs and we used a permutation hash table to check for redun-
dant search paths. This is not a critical aspect and can be removed with little impact–in
fact, due to memory constraints it must be removed for genomes larger than approx-
imately 400 genes. The last to mention is the use of set Δ. This is inherited from the
naive method as a way to allow every sorting reversal at least one chance to be searched.
We will continue to investigate better ways of directing the search past the initial steps.

InversionMedianSolver: input permutations π1, π2, π3
Compute the pairwise inversion distances between π1, π2, π3
Choose the one with the smallest sum of its two distances as π4
If π1 was not assigned to π4, swap it with the permutation which was

Initilize a global variable BestSoFar to an arbitrarily large value
Call RecursiveSearch: π1, π2, π3, π4

RecursiveSearch: input permutations π1, π2, π3, π4
Obtain set α of sorting inversions from π4, π2
Obtain set β of sorting inversions from π4, π3
Obtain set γ, the intersection of α and β
Call UseGamma: γ, π1, π2, π3, π4
While set Δ contains elements:

Set γ to Δ and clear Δ
Call UseGamma: γ, π1, π2, π3, π4

UseGamma: input set γ and permutations π1, π2, π3, π4, output set Δ
For each pair of inversions in γ:

If inversions do not commute add 1 weight to each;
Repeat until the weight of all inversions in γ is 0:

Find the inversion A with largest weight
Remove A from γ and place in set Δ
Reduce weight of each inversion not commute with A by 1

For each pair of inversions in γ:
If pair is perpendicular, add 1 weight to each

Repeat until the weight of all inversions in γ is 0:
Find the inversion A with largest weight and remove A from γ
Reduce weight of each inversion perpendicular to A by 1

Apply the reversals in set γ to π4 to create π′
4

Calculate the median score of π′
4 with respect to π1, π2, π3

If the score is less than or equal to BestSoFar
Assign the score to BestSoFar and output π′

4
If the median score of π′

4 is less than the score of π4
Call RecursiveSearch: π1, π2, π3, π4

Fig. 5. Algorithm overview for the new inversion median solver

Improving Inversion Median Computation 39

4 Experimental Results

4.1 Setup of Simulations

We set out to examine the performance (in terms of speed and accuracy) of the new
method, using simulated datasets. Because all existing median solvers have very good
performance when genomes are close, we only test distant genomes and compare our
method against Caprara’s solver (slower but exact), and MGR (faster but less accurate).

We focused our experiments on organelle genomes and generated datasets of three
genomes with 100 genes for each genome (larger genome sizes were also tested). We
first generated trees with three leaves and one internal node, assigned the identity per-
mutation on the internal node and generate the three leaves by applying rearrangement
events along each edge respectively. The number of events on each edge is governed
by two parameters: the number of overall evolutionary events and the tree shape. We
used various number of evolutionary rates: letting r denote the total number of events
along all three edges, we used values of r in the range of 80 to 140. We found from our
experience that the tree shape plays an important role in median computation, thus we
used three tree shapes for each r: a tree with almost equal length edges, i.e., the ratio
of three edges are (1 : 1 : 1); a tree with one edge a bit longer than the other two, i.e.,
of ratio (2 : 1 : 1); a tree with on edge much longer than the other two, i.e., of ratio
(3 : 1 : 1). While all computations were based on inversion distances and inversion me-
dians, we generated the data with a deliberate model mismatch to test the robustness of
the methods, using a mix of 80% inversions and 20% transpositions. For each combi-
nation of parameter settings, we ran 10 datasets and averaged the results. Experiments
were conducted on a Linux cluster with 152 Intel Xeon CPUs, but each CPU works
independently on a test task. MGR command line options -c -H1 were used.

4.2 Accuracy

Caprara’s median solver had no problem to finish all datasets with evolutionary rate
r = 80 and r = 100; however, it could finish a very small number of datasets for r = 120
and 140: only four out of 60 datasets finished within 48 hours of computation. Here we
report the result separately using slightly different criteria for r ≤ 100 and r ≥ 120.

For r ≤ 100, we report the average median score from our method, Caprara’s solver,
and MGR. We also report the average perfect (lower bound) median score, which is the
best possible score for any median solver. Table 1 shows the result, which indicates that
our method is very accurate, with < 1.5% errors. Our method is most accurate when
all three edges are almost equal length, with 70% datasets report median score to those
found by Caprara’s, while the other 30% are only one score away.

For r ≥ 120, since Caprara’s solver cannot finish all datasets, we only report the
average median score from our method and compare it to MGR and the average perfect
median score. Table 2 shows the result, which indicates that our method can find better
medians than MGR does.

An additional measure of the quality of results is the distance to the simulated ances-
tor genome. Here we report the average distance to the ancestor for the three methods
for those Caprara’s method could complete in Table 3, and in Table 4 those sets which
Caprara’s method could not solve.

40 W. Arndt and J. Tang

Table 1. Comparison of median scores for r ≤ 100

(1:1:1) (2:1:1) (3:1:1)
r=80 r=100 r=80 r=100 r=80 r=100

Prefect median score 86.2 104.2 89.4 105.8 85.7 101.3
Caprara’s median score 87.9 107.6 91.4 109.8 88.0 105.2

New method’s median score 88.2 109.5 91.8 111.4 89.1 106.7
MGR median score 90.3 113.7 94.3 116.8 89.8 110

Table 2. Comparison of median scores for r ≥ 120

(1:1:1) (2:1:1) (3:1:1)
r=120 r=140 r=120 r=140 r=120 r=140

Prefect median score 116.1 123.5 116.1 122.7 110.3 117.6
New method’s median score 125.8 135.3 124.5 134.7 117.9 127.0

MGR median score 132.9 143.6 131.4 142.8 123.6 135.1

Table 3. Comparison of distance to simulated ancestor for r ≤ 100.

(1:1:1) (2:1:1) (3:1:1)
r=80 r=100 r=80 r=100 r=80 r=100

Caprara’s method 4.5 18.2 7.2 16.8 5.2 15.7
New Method 9.3 21.7 9.6 20.4 7.2 18.2

MGR 9.3 23.5 11 25.4 9.1 18.6

Table 4. Comparison of distance to simulated ancestor for r ≥ 120

(1:1:1) (2:1:1) (3:1:1)
r=120 r=140 r=120 r=140 r=120 r=140

New method 39.8 49.3 35.2 45.4 23.1 32.1
MGR 40.7 51.6 37.5 49.5 29.7 37.7

4.3 Speed

We recorded the running time for each run as well. Since our method will report all
results it can find, there are two measures: 1) the time it finds the first result, and 2) the
average number of results it finds within the limit of one hour.

Table 5 and Table 6 shows the first time comparison. When the datasets are relatively
easy (r = 80), Caprara’s solver is much faster than our method. However, it slows down
very quickly when the difficulty increases, and almost no dataset can be finished for
r ≥ 120. Meanwhile, the running time of our method is quite consistent with fewer than
30 minutes were used even for the most difficult datasets, which is comparable to the
speed of MGR.

In general, our method found 12 medians with the same score within one hour. How-
ever, the number is not consistent: some datasets have only one result, while others

Improving Inversion Median Computation 41

Table 5. Comparison of running time for r ≤ 100 (in seconds)

(1:1:1) (2:1:1) (3:1:1)
r=80 r=100 r=80 r=100 r=80 r=100

New method’s time 324 551 123 409 1.6 9.3
MGR time 11.2 51.9 11.6 78.2 10.3 35

Caprara’s time 3.6 12876 57.2 31387 4.3 6908

Table 6. Comparison of running time for r ≥ 120 (in seconds)

(1:1:1) (2:1:1) (3:1:1)
r=120 r=140 r=120 r=140 r=120 r=140

New method’s time 1485 1187 673 453 30 226
MGR time 271.6 560.1 237.8 626.9 135.3 385.4

Caprara’s time > 172880 > 172880 > 172880 > 172880 > 172880 > 172880

Table 7. Average number of medians found for each test case

r=80 r=100 r=120 r=140
(1:1:1) 27.4 4.0 29.9 7.1
(2:1:1) 11.6 22.9 13.8 8.9
(3:1:1) 6.0 9.1 5.6 11.4

have as many as 120 results. Additionally, by checking inversions on the found medi-
ans which do not change the median score, on average for each found median two more
can be quickly located, though they are not significantly different from those already
found. Table 7 shows the average number of medians found by our method.

4.4 Medians of Larger Genomes

We tested the performance of our new method on some simulated datasets of larger
genomes. The simulations were created with the same parameters, except the number
of genes was increased to 500. The tested trees all have edge lengths of 100, 100, and
200, producing a tree with e

n = 20%. Neither Caprara’s solver nor MGR could produce
results for any of these trees. Our method, however, can consistently return medians
which are within 7% of the lower bound in less than 30 seconds.

5 Discussion

The method presented here offers acceptable solutions for the median problem which
previous methods are either completely unable to solve in a timely manner, or less accu-
rate. The source of speedup is that our search complexity increases not directly with the
number of genes and events, but with the size of the set of sorting reversals which sort
one input permutation towards both of the others. The two types of problems which our
method performs relatively poorly are those with a small number of events, which limit

42 W. Arndt and J. Tang

the set of shared reversals causing the search to be too shallow, and problems that have
all three edges of approximately equal length causing the shared sorting reversal set to
be too large resulting in an overly broad search. Real world problems, however, can ei-
ther be limited to small data sets, in which case existing tools are well sufficient, or may
require consideration of large genomes of which such genomes are rarely symmetrical,
making our method appropriate.

We believe there is a big problem in the general approach of using the inversion
median problem to solve phylogenetic trees composed of distant genomes, a topic dis-
cussed in detail in [12]. The direct optimization methods (GRAPPA and MGR) are based
upon minimizing the number of inversion events, which requires either the false as-
sumption that there is only one optimal median solution for a given problem instance,
or the slightly weaker assumption that although multiple optimal solutions exist, they
are all equally valuable for construction of trees.

The issue is most evident when viewing the distances between found medians and
the true ancestor: although it is still proportional to median score, increasing the number
of events causes the optimal median and ancestor genome to diverge. Several of our test
simulations demonstrate the existence of multiple medians that form trees with edges
differing by 30% or more, although the tree scores are equal. This shows instances
of a median problem do not contain the amount of exact information which current
tree methods presume they do. We do not believe that this cause is hopeless however,
instead, the notion that any median with optimal score is an equal representative of an
internal node should be replaced; new methods or tree building algorithms should be
devised which use multiple medians as an intermediate step moving closer to the true
ancestor. To obtain more accurate results for large genomes, we may need to find as
many medians as possible and choose the one with the minimal total distance to all the
others as the representative, or we may need to consider permutations with slightly less
than optimal score if they appear in sufficiently large clusters.

The structure of median problems has further vulnerabilities. We ran a small experi-
ment where a random median problem of 10 genes was created, and the median score of
every permutation (21010!) in an exhaustive search was found. There are several find-
ings from this experiment: 1) as confirmed by other researchers [3], there exist multiple
medians–we found 81 medians for this experiment, with median score of 15; 2) Some
of the medians were as far as 9 inversions from one another, but all these 81 medians
gathered together in a cloud at the center of the problem space. In order to transverse
from one of the initial permutations to a median, the choices of inversions remain very
limited, and the possible paths remain very close, until the search nears where medians
are located. If this general structure is similar to that of a large median problem instance,
then this could be how using commuting reversals achieves its speedup, and additional
methods to exploit this structure would likely exist.

6 Conclusions and Future Work

In this paper we present a new inversion median solver using commuting reversals, and
introduced the concept of parallel and perpendicular sorting reversals. We extensively
tested the method and compare its performance with the leading median solver, using

Improving Inversion Median Computation 43

simulated datasets. The experimental results showed that our method is very accurate,
and is much faster than the leading solver when the datasets are difficult. We will test
the effectiveness of this median solver for phylogenetic reconstruction, and develop
methods that can effectively use the multiple median solutions returned by our method
to get closer to the true ancestor. We will also extend the concept of solving medians
based on breakpoint cycle interactions. If care is taken when hurdles or a fortress are
present, the visualization of breakpoint graph cycle interactions could be used to find an
upper bound on sorting inversions by predicting and tracking the behavior as the number
of cycles increases. This would proceed by examining which and how many potential
reversals cut the cycles of other sorting inversions, and thus choose a inversion to apply
which separates the break locations of least number of other possible sorting inversions.

Acknowledgments

The authors were supported by US National Institutes of Health (NIH grant number
R01 GM078991-01) and by the University of South Carolina. WA is also supported by
a fellowship provided by Rothberg foundation. We also thank the anonymous reviewers
for their comments and suggestions of improving the original draft.

References

1. Bader, D.A., Moret, B.M.E., Yan, M.: A fast linear-time algorithm for inversion distance
with an experimental comparison. J. Comput. Biol. 8(5), 483–491 (2001)

2. Bernt, M., Merkle, D., Middendorf, M.: Genome rearrangement based on reversals that pre-
serve conserved intervals. IEEE/ACM Trans. on Comput. Biol. and Bioinfo. 3(3), 275–288
(2006)

3. Bernt, M., Merkle, D., Middendorf, M.: Using median sets for inferring phylogenetic trees.
Bioinformatics 23(2), 129–135 (2007)

4. Blanchette, M., Sankoff, D.: The median problem for breakpoints in comparative genomics.
In: Jiang, T., Lee, D.T. (eds.) COCOON 1997. LNCS, vol. 1276, pp. 251–263. Springer,
Heidelberg (1997)

5. Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. In: Miyano, S., Takagi,
T. (eds.) Genome Informatics, pp. 25–34. Univ. Academy Press (1997)

6. Bergeron, A., Chauve, C., Hartman, T., St-Onge, K.: On the Properties of Sequences of
Reversals that Sort a Signed Permutation. Journal Ouvertes Biologie, Informatique, Mathe-
matiques (JOBIM 2002), 99–108 (2002)

7. Bourque, G., Pevzner, P.: Genome-scale evolution: Reconstructing gene orders in the ances-
tral species. Genome Research 12, 26–36 (2002)

8. Caprara, A.: Formulations and hardness of multiple sorting by reversals. In: Proc. 3rd Int’l
Conf. on Comput. Mol. Biol. RECOMB99, pp. 84–93. ACM Press, New York (1999)

9. Caprara, A.: Sorting permutations by reversals and Eulerian cycle decompositions. SIAM J.
Discrete Math. 12(1), 91–110 (1999)

10. Caprara, A.: On the practical solution of the reversal median problem. In: Gascuel, O., Moret,
B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 238–251. Springer, Heidelberg (2001)

11. Downie, S., Palmer, J.: Use of chloroplast DNA rearrangements in reconstructing plant phy-
logeny. In: Soltis, P., et al. (eds.) Plant Molecular Systematics, pp. 14–35 (1992)

44 W. Arndt and J. Tang

12. Eriksen, N.: Reversal and Transposition Medians. Theoretical Computer Sicence 374, 111–
126 (2007)

13. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for
sorting signed permutations by reversals). In: Proc. 27th Ann. Symp. Theory of Computing
STOC’95, pp. 178–189. ACM Press, New York (1995)

14. Hannenhalli, S., Pevzner, P.A.: To cut. . . or not to cut (applications of comparative physi-
cal maps in molecular evolution). In: Proc. 7th ACM-SIAM Symp. on Discrete Algorithms
(SODA’96), pp. 304–313. SIAM Press (1996)

15. Larget, B., Simon, D.L., Kadane, J.B., Sweet, D.: A Bayesian analysis of metazoan mito-
chondrial genome arrangements. Mol. Biol. and Evol. 22(3), 486–495 (2005)

16. Moret, B.M.E., Siepel, A., Tang, J., Liu, T.: Inversion medians outperform breakpoint me-
dians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D. (eds.)
WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002)

17. Moret, B.M.E., Wyman, S., Bader, D.A., Warnow, T., Yan, M.: A new implementation and
detailed study of breakpoint analysis. In: Proc. 6th Pacific Symp. on Biocomputing (PSB 01),
pp. 583–594. World Scientific Pub, Singapore (2001)

18. Moret, B.M.E., Tang, J., Warnow, T.: Reconstructing phylogenies from gene-content and
gene-order data. In: Gascuel, O. (ed.) Mathematics of Evolution and Phylogeny, pp. 321–
352. Oxford Univ. Press, Oxford, UK (2005)

19. Palmer, J.: Chloroplast and mitochondria genome evolution in land plants. In: Herrmann, R.
(ed.) Cell Organelles, pp. 99–133 (1992)

20. Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Elec. Colloq.
on Comput. Complexity 71 (1998)

21. Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive breakpoint
reuse in mammalian evolution. Proc. of Natl. Acad. of Sci. USA 100, 7672–7677 (2003)

22. Raubeson, L., Jansen, R.: Chloroplast DNA evidence on the ancient evolutionary split in
vascular land plants. Science 255, 1697–1699 (1992)

23. Saitou, N., Nei, M.: The neighbor-joining method: A new method for reconstructing phylo-
genetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

24. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. J.
Comput. Biol. 5, 555–570 (1998)

25. Siepel, A., Moret, B.M.E.: Finding an optimal inversion median: experimental results. In:
Gascuel, O., Moret, B.M.E. (eds.) WABI 2001. LNCS, vol. 2149, pp. 189–203. Springer,
Heidelberg (2001)

26. Siepel, A.: An algorithm to enumerate sorting reversals for signed permutations. J. Comput.
Biol. 10, 575–597 (2003)

Inferring a Duplication, Speciation and Loss

History from a Gene Tree

(Extended Abstract)�

Cedric Chauve1,2, Jean-Philippe Doyon3, and Nadia El-Mabrouk3

1 Department of Mathematics, Simon Fraser University, 8888 University Drive,
V5A 1S6, Burnaby (BC), Canada

cedric.chauve@sfu.ca
2 CGL and LaCIM, UQAM, Montréal, Canada

3 DIRO, Université de Montréal, CP6128, succ. Centre-Ville, H3C 3J7, Montréal
(QC),Canada

{mabrouk,doyonjea}@iro.umontreal.ca

Abstract. We consider two questions related to the evolution of gene
families. First, given a gene tree for a gene family, can the evolutionary
history of this family be explained with only speciation and duplication
events, and without gene loss. We show that this question can be an-
swered in linear time, and that such a gene tree induces a single species
tree consistent with a history with no loss. We then present a heuristic
for the following problem: if a gene tree can not be explained without
gene loss, what is the minimum number of losses involved in an evolu-
tionary history of the gene family. We finally evaluate our algorithms on
a dataset of plants gene families.

1 Introduction

The duplication of genetic material, from a single gene to the whole-genome, is
a fundamental process in the evolution of species, and in particular eukaryotes
[12,6]. As a consequence, in most nuclear genomes, many genes are present in mul-
tiple copies, that define gene families. Gene families evolve, from a single ancestral
gene, through microevolutionary events at the nucleotide level, and macroevolu-
tionary events at the genomic level, such as gene duplication, gene loss, genome
rearrangements, and speciation events (see [5] and references there). Understand-
ing the evolution of gene families is a fundamental problem that has several appli-
cations. For example, it can help to distinguish between orthologs and paralogs:
orthologs are copies that are directly related through speciation, while paralogs
are copies that have evolved by duplication following a speciation event. This is an
important question for functional annotation of genes, as it is believed that pairs
of orthologs are more likely to have similar functions. For whole genome analy-
sis based on gene orders and rearrangements, understanding the evolution of gene

� Work supported by grants from NSERC and SFU.

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 45–57, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

46 C. Chauve, J.-P. Doyon, and N. El-Mabrouk

families can help establishing unambiguous one-to-one mappings between pairs of
genomes, which is, in general, a hard computational problem (see [2]).

As the notion of orthology and paralogy is directly related to the history of spe-
ciation and duplication events during genomes evolution, a natural way of distin-
guishing between the two types of gene homologues is to infer these events from the
phylogenetic tree of a gene family. This question has been widely considered in the
case of a well established species tree. It can be described as “fitting a gene tree into
a species tree”, which is not obvious due to the possible incongruence between the
two trees [10]. The main algorithmic approach developed to solve this problem,
the gene tree/species tree reconciliation, allows to identify the duplications with
respect to the speciation events in the species tree [4,13]. It is based on a mapping
of the gene tree into the species tree, that can be done in linear time [15,3,16].

Here we consider the more general case where the species tree is unknown. In
this context, a natural question is to infer a species tree from a set of gene trees,
that optimizes a given criterion, either combinatorial, like the number of dupli-
cations and/or losses [13,11], or probabilistic [1]. However, we follow a different
approach, as we start from a decision question, motivated among other reasons,
by the importance of duplications and speciations to infer co-orthologs: given the
gene tree of a specific gene family, can this gene tree be explained using only du-
plication and speciation events (e.g. without gene losses)? If a gene tree can be
explained by a Duplication/Speciation history, we call it a DS-tree (a terminol-
ogy inspired from [9]). Otherwise, we explain the non-agreement between the gene
tree and any DS history by the presence of gene loss events, and we consider the
problem of minimizing such number of gene losses. The more general problem of
minimizing duplications and losses (in the minimum mutation cost model) for rec-
onciling a set of gene trees has been shown to be NP-hard [13].

In Section 2, we define the notion of a DS-tree in both the frameworks of evolu-
tion and reconciliation. We then show, in Section 3, that deciding if a gene tree is
a DS-tree can be answered in linear time1, and that in such a case, there is a sin-
gle species tree that is compatible with the corresponding Duplication/Speciation
history. In the case where a given gene tree T is not a DS-tree, T can be derived
from a DS-tree by a series of gene losses. We introduce, in Section 4, the prob-
lem of finding the minimum number of gene losses that are needed to transform a
DS-tree into T , and we give an efficient heuristic for this problem running in time
O(g×n), where n is the size of T and g is the number of genomes represented in T .
We finally analyze, in Section 5, a dataset of plant gene families taken from [14].

2 Duplication/Speciation History and Reconciliation

Duplication/Speciation history. Let G = {1, 2, · · · , g} be a set of integers repre-
senting g different species (genomes). A species tree for G is a binary tree with
exactly g labeled leaves, where each i ∈ G represents the label of a single leaf. A
gene tree T on G is a binary tree with labeled leaves, where each leaf is labeled
1 For space reasons, all proofs are omitted and will appear in the full version of this

paper.

Inferring a Duplication, Speciation and Loss History 47

11 12

21 22 23 24

31 32 33

Genome 1

Genome 2

Genome 3

Speciation 1

Speciation 2

(a)

11 21 22 23 24 33 123231

(c)

{{1},{2,3}} {{2},{3}}

{{2},{3}}

{{1},{2,3}}

{{2},{3}}

1 2 3

(b)

Fig. 1. (a) A DS-history; the segments represent the individual genes; the duplication
events are indicated by bold lines, and the speciation events by dashed lines; the genes
are denoted as ki meaning “gene i in genome k”. (b) The induced species tree S. (c)
The induced gene tree T ; notations introduced in Section 3: the partition associated
to each internal node is shown; the border B of T contains the two nodes indicated by
plain circles, with the associated partition {{1}, {2, 3}}, the nodes indicated by plain
squares form the border of the forest Fr containing the subtrees of T whose leaves
belong to {2, 3}.

by an integer from G. It is a formal representation of a phylogenetic tree of a
gene family, where each leaf labeled i represents a member of the gene family
located on genome i.

We say that T is a Duplication/Speciation tree (or simply a DS-tree) if there
exists a history involving only duplication and speciation events that can lead
to the observed tree T . Hereafter, we formally define a Duplication/Speciation
history (from now called DS history). See Figure 1 for an illustration.

Definition 1. Let T = (T 1, T 2, · · ·T n) be an ordered sequence of n gene trees.
We denote by gk the number of genomes represented by T k for any k. We say
that T is a DS history if and only if:

1. T 1 = x is a tree restricted to a single vertex x and g1 = 1;
2. For 0 < k < n, one of the two following situations hold:

(a) Duplication event: T k+1 is obtained from T k by adding two children y
and z to a leaf x, and labeling them as x.

(b) Speciation event: There exists i, 1 ≤ i ≤ gk, such that T k+1 is obtained
from T k by adding two children y and z to each leaf x of T k labeled
i, and labeling one of the two new nodes by i and the other by gk + 1.
Moreover, gk+1 = gk + 1.

Let T be a DS-history leading to a gene tree T . Then, by construction, T leads to
a unique species tree S induced by the speciation events (see Figure 1.a. and b.).
We say that the species tree S is DS-consistent with T .

48 C. Chauve, J.-P. Doyon, and N. El-Mabrouk

Reconciliation. Suppose that a species tree S is already known for G. Then a
natural question is to know whether S is DS-consistent with T . This question
can be answered by using the classical reconciliation approach that “embeds”
the gene tree T into the species tree S [7,13]. The potential non-congruence
between a species tree and a gene tree can then be explained by a minimum
number of gene losses. More precisely, the reconciliation approach aims to infer
a duplication/loss history that has led to the gene tree T , based on a particular
mapping (the LCA mapping) from the vertices of T to the vertices of S. We
denote by �(T, S) the number of loss events.

In this framework, the notion of DS-tree and DS-consistent species tree can
be stated as follows (see [7] for a proof of the equivalence between the two
approaches): a gene tree T on G is a DS-tree if there exists a species tree S on
G such that �(T, S) = 0, in which case S is said to be DS-consistent with T .

3 Recognizing a DS-Tree

In this section, we propose two characterizations of a DS-tree following from the
fact that a DS-tree should lead to a species tree S that is DS-consistent with T .
The first follows a bottom-up approach, and is the base of the linear-time recog-
nition algorithm presented at the end of this section. The second characterization
follows a top-down strategy and leads naturally to our heuristic for the problem of
inferring the minimum number of gene losses required to recover a DS-tree from a
given gene tree (Section 4).

We first introduce a few notations and definitions. Let T be a gene tree on a
genome set G = {1, . . . , g}. For a given vertex x of T , we denote by Tx the subtree
of T rooted at x, and by L(x) the subset of G defined by the labels of the leaves of
Tx. We also denote by xl and xr respectively the left and right child of x.

A cherry of T is a subset {i, j} of G such that L(x) = {i, j} for a given vertex
x of T .

Definition 2. A cherry {i, j} is said to be a DS-valid cherry for T if, for any
vertex xl such that L(xl) = {i} (resp. {j}) and L(x) �= {i} (resp. {j}) where x
is the parent of xl, the sibling xr of xl is such that L(xr) = {j} (resp. {i}).

If {i, j} is a DS-valid cherry, we denote by c(T, i, j) the gene tree on G\{i, j} ∪
{g + 1} obtained by replacing every internal vertex x such that L(x) = {i, j} by
a leaf labeled g + 1.

Let x be an internal vertex of T . The unordered pair {L(xl), L(xr)} is called
the partition associated to x. We say that x is valid iff L(xl) ∩ L(xr) = ∅. Let F
be a forest, that is a set of one or more trees. We say that a set X of vertices of
F is covering F iff each leaf belonging to a tree of F is a descendant of a unique
vertex of the set X . We say that a vertex x is higher than a vertex z if z is a
descendant of x. Let B = {b1, . . . , bk} be the set of highest valid vertices of a
forest F : B is called a border iff it is covering F and all the partitions associated
to the vertices of B are identical. Let B be a border of a forest F , and {Pl, Pr}
be the partition generated by the vertices of B. We denote by Fl (resp. Fr) the

Inferring a Duplication, Speciation and Loss History 49

set of subtrees whose leaves labels belong to Pl (resp. Pr) (see Figure 1.c. for an
illustration of notations).

Definition 3. A DS-valid forest is recursively defined as follows:

1. It is a set of leaves or
2. It has a border and its resulting forests Fl and Fr are DS-valid.

Theorem 1. Let T be a gene tree on G. The following statements are equivalent.

1. T is a DS-tree.
2. Either g = 1, or for any cherry {i, j}, {i, j} is a DS-valid cherry for T and

c(T, i, j) is a DS-tree on G\{i, j} ∪ {g + 1}.
3. T is a DS-valid forest.

Corollary 1. Let T be a DS-tree on G. There exists a single species tree for G
that is DS-consistent with T .

Point 2 of Theorem 1 immediately translates into a simple algorithmic principle
allowing to check whether a gene tree is a DS-tree. It is based on iteratively
considering a cherry, checking its DS-validity, and then contracting all its oc-
currences into leaves and updating the species tree with the current cherry. We
describe below a linear time and space algorithm based on this principle, taking
as input a gene tree T on G with |G| = g, and returning the species tree that is
DS-consistent with T , if any.

Algorithm DS-recognition (T)
1. Let S be an empty tree and m = g + 1
2. Perform a depth-first traversal of T , and let x be the current vertex
3. IF x is an internal vertex with children xl and xr such that
4. L(xl) = {i} and L(xr) = {j} and i �= j THEN

5. FOR EVERY vertex zl such that L(zl) = {i} DO

6. Let zr be the sibling of zl and z its parent
7. IF L(zr) = {j} THEN replace Tz by a leaf labeled m
8. ELSE IF L(zr) �= {i} THEN RETURN FALSE
9. IF there remains a vertex x with L(x) = {j} THEN

10. RETURN FALSE
11. Add to S a subtree with root labeled m and children labeled i and j
12. Increment m
13. RETURN S

Theorem 2. Given a gene tree T with n vertices, Algorithm DS-recognition
returns FALSE iff T is not a DS-tree, and the only species tree that is DS-
consistent with T otherwise. It can be implemented to run in O(n) time and
space.

50 C. Chauve, J.-P. Doyon, and N. El-Mabrouk

4 Inferring Gene Losses in a Non DS-Tree

4.1 Problem Statements

If a gene tree T is not a DS-tree, and assuming that the given gene tree T is
correct (see [8] for a discussion on the case where gene duplications can lead
to an incorrect gene tree for a gene family), this implies that some homologous
genes are missing or have been deleted or transformed to pseudo-genes during
evolution. When a species tree S is known, the reconciliation method can be
used to infer a scenario of minimum number �(T, S) of gene losses that has led
to the observed tree. In this section, we assume that the species tree is unknown,
and consider the following natural optimization problem.

Duplication/Loss problem: Given a gene tree T that is not a DS-tree, find a
species tree S such that �(T, S) is minimum.

This problem can be related to those considered in [13] that compute, for a
given gene tree T (or more generally a set of gene trees T1, . . . , Tk), a species
tree S minimizing the total number of duplications (in the so-called duplication
cost model) or duplications and losses (in the mutation cost model). They have
both been shown to be NP-hard [13], but fixed-parameter tractable [11].

We will instead consider an equivalent formulation of this problem, based on
the following property: if T is not a DS-tree, then for every species tree S, there
is a DS-tree T S that can be obtained from T by inserting a minimum number of
subtrees such that S is DS-consistent with T S. Each of these subtree insertions
represents a gene loss in a given ancestral or extent genome. This way to relate
T to a DS-tree T S, for a given species tree S, leads to the following optimization
problem, in the case of an unknown species tree:

Subtrees Insertion Problem: Given a gene tree T that is not a DS-tree, find
the minimal number δ of subtree insertions in T allowing to transform T into a
DS-tree T ′. We denote by (S, δ) a solution to this problem, where S is such that
T ′ = T S.
It follows from [7] that:

Proposition 1. The Duplication/Loss Problem and the Subtrees Insertion Prob-
lem are equivalent: a species tree S is a solution to the Duplication/Loss Problem
with �(T, S) = δ if and only if (S, δ) is a solution to the Subtrees Insertion Problem.

4.2 A Heuristic for the Subtrees Insertion Problem

We now describe an algorithm allowing to obtain an upper bound on the min-
imum number of subtrees insertions – called insertions from now for short –
required to transform a gene tree T into a DS-tree.

The method can be decomposed in three steps: (1) recursively label the ver-
tices of T with subsets of the genome set G, (2) use these labels to construct
a DS-tree from T , and (3) factorize some of the insertions to reduce the total
number of insertions.

Inferring a Duplication, Speciation and Loss History 51

[1,2]

[1,2]

[1,3,4,5]

[1,5]

{2,3, 4}
{1,2}

{3,4,5}

{2,3,4,5} [4,5]

1 1 2 3 4 5 1 5

{4}

[3,4,5]

u

v

Fig. 2. An illustration of Procedure Relabel for a tree on the genome set G =
{1, 2, 3, 4, 5}. For each internal vertex x, the label in square brackets is the genome
set L(x) of x and the label in brackets is the genome subset inserted by Procedure
Relabel. This tree has three levels: the first level is the set of vertices indicated by bold
circles, the second is the set of bold square vertices, and the third is the two leaves
indicated by white circles. The crossed genome in the label of vertex u is the genome
removed after applying instruction 7 of Procedure Relabel .

Labeling the vertices of T . Initially, each vertex x of T is labeled by its genome set
L(x). A set of vertices is said consistent if and only if any two vertex labels with
a non-empty intersection are identical. Procedure Relabel below then relabels
the vertices of T in order to obtain successive levels of consistent vertices. It
uses the following concepts: a set {x1, . . . , xk} of vertices is said to be connected
if the intersection graph induced by the labels of these vertices (the nodes of
the graph are the xi’s and two nodes are connected if their labels have a non-
empty intersection) is connected. Completing the labels of a set {x1, . . . , xk} of
connected vertices consists in adding to the label of every vertex x the subset
∪k

i=1L(xi)\L(x) of G, in order that its new label is ∪k
i=1L(xi) (see Fig. 2).

Procedure Relabel (T)
1. F is the forest restricted to the tree T ;
2. WHILE F is not restricted to a set of leaves DO

3. Let V be the set of highest valid vertices of F ;
4. Complete the labels of every maximal connected subset of V
5. Let F be the forest of V;
6. IF g is inserted in the labels of a vertex x and of a descendant of x THEN

7. Remove g from the label of x.

The successive sets of highest valid vertices of T considered in Procedure Relabel
are called the successive levels of T . An illustration of this procedure is given in
Figure 2.

A first transformation of T into a DS-tree. We now describe how to use the
vertices labels computed by Procedure Relabel (T) in order to insert subtrees
into T , in such a way that the result is a DS-tree. We denote by L the new
labeling of the vertices of T computed by Procedure Relabel (T): for a vertex

52 C. Chauve, J.-P. Doyon, and N. El-Mabrouk

x of T , L(x) is the new genome set associated to x. For a given level of T ,
represented by a forest F of p trees T1, . . . , Tp rooted at the vertices x1, . . . , xp,
we extend the notion of connected subset of the x′

is used in Procedure Relabel
as follows: a subset of the T ′

is is said to be connected if the intersection graph
induced by the labels of the corresponding x′

is is connected. We call the partition
of F by genome sets the unique partition of F into forests defined as maximal
connected subsets of the T ′

is.
The construction algorithm is described below, and illustrated in

Figure 3.

Procedure Construct-DSTree (T,L)
1. FOR each level of T (involving insertions) beginning with the last level DO

2. Let F be the forest representing the current level;
3. Let F1, · · · Fp be the partition of F by genome sets;
4. FOR each subforest Fi DO

5. Let Gi be the genome set of Fi;
6. Let P be an arbitrary phylogeny for Gi;
7. FOR each vertex x of T such that L(x) ⊂ Gi DO

8. Perform the unique set of subtrees insertions,
9. in the subtree Tx and on the edge from x to its parent
10. leading to the phylogeny P

The construction procedure can be reformulated as follows: consider succes-
sively each level F of T beginning with the last one, for each tree Ti of F rooted
at xi, perform the subtrees insertions leading to the genome set L(xi), and then
replace each tree of Ti by a single leaf. The key observation is that each level
considered by this procedure consists solely of leaves and cherries. Therefore,
for any xi, any arbitrary phylogeny P representing the genome set L(xi) can be
obtained by subtrees insertions in Ti. In other words, at each level, there is a
coherent way of inserting missing genes in a way leading to the same phylogeny
at each node of the tree. This is the main argument used in the proof of the
following theorem.

2 43214 35345 2 51543211

u

v
w

Fig. 3. The result of applying Procedure Construct-DSTree on the input (T, L) given
by Fig 2. The inserted branches are indicated by dotted lines.

Inferring a Duplication, Speciation and Loss History 53

ABABA B

u
(2)

v w

u

ABBA A AB

(1) v w

uu

Fig. 4. Illustration of the two factorization rules

Theorem 3. Let T be a gene tree that is not a DS-tree, and (T, L) the out-
put of Procedure Relabel(T). The gene tree computed by Procedure Construct-
DSTree(T,L) is a DS-tree.

Corollary 2. The number of insertions performed by Procedure Construct-
DSTree is an upper bound on the minimum number of insertions necessary to
transform T into a DS-tree.

Note that in step 6 of Procedure Construct-DSTree, we choose an arbitrary phy-
logeny for the considered subset of taxa. This point could be improved as this
phylogeny can be non optimal in terms of the number of subtrees insertions. It
could be approached, for example, in a greedy way by selecting the phylogeny
that induces the minimum number of subtrees insertions.

Reducing the number of subtrees insertions. A further improved upper bound can
be obtained by “factorizing” the subtree insertions made by Procedure Construct-
DSTree. Let T ′ be the tree computed by Procedure Construct-DSTree, u be an
internal vertex of T ′ that is also a vertex of T . Let L(ul) be the left genome set of
u in T and L(ur) be the right genome set of u in T . Suppose that the two children
v and w of u in S are two inserted vertices, and let (v, L(vr)) and (w, L(wl)) be
the two inserted branches. Then we perform the following modification of T ′:

1. If Lu = Ru, then remove the two branches (v, L(vr)) and (w, L(wl)) and
insert the subtree Twl

on the branch from u to its parent (see (1) of Figure 4).
2. If L(vr) = L(wl) and L(vl) = L(wr), then remove the vertices v and w and

the subtrees T ′
vr

and T ′
wl

(see (2) of Figure 4).

Applying the factorization rule (1) on the tree of Figure 3 gives rise to the
tree of Figure 5, leading to 6 subtrees insertions.

Complexity. Let n be the size (number of vertices) of T . A depth-first traversal
of T , in time O(n), is required before applying Procedure Relabel for the initial
labeling of T ’s vertices by their genome sets. Finding the sets of highest valid
vertices then requires a second preorder tree traversal, and for each set of highest
valid vertices, relabeling the vertices requires to compare their genome sets,
which can be done in time proportional to the number g of different genomes.
Therefore, Procedure Relabel can be done in time O(g × n).

For each level F of T , Procedure Consruct-DSTree requires to partition F
into its subforest, which is done in time proportional to g by comparing genome

54 C. Chauve, J.-P. Doyon, and N. El-Mabrouk

1 2 1 2 3 4 5 3 4 5 1 2 1 2 3 4 5

Fig. 5. The result of applying the factorization rules on the DS-tree of Figure 3

sets for one level, and thus in time O(g × n) for all the levels of T . On the other
hand, as each tree insertion can be done in constant time, and a maximum of g
tree insertions are performed at each vertex of T , the time complexity for tree
insertions is in O(g × n). Therefore, Procedure Consruct-DSTree can be done in
time O(g ×n). Finally, the step of reducing the number of subtree insertions can
be done in time O(n), by performing a depth-first traversal of T . Therefore, the
time complexity of the whole algorithm is in O(g × n).

5 Experimental Results

We describe the results obtained with the algorithms presented in the previous
sections on the 577 gene families studied in [14], in a study of the phylogeny of
seven angiosperm genomes from EST data. We focus mainly, in this preliminary
experiment, on the computational properties of our algorithms, and in particular
on the quality of our heuristic for the Duplication/Loss Problem.

Data. Each of the 577 gene families contains at least four genes and spans
at least three genomes. The gene trees were obtained with PAUP, using a
maximum likelihood approach (see [14] for a detailed description of the pro-
cess followed to obtain these gene families and gene trees). The data, includ-
ing the gene trees and statistics on the size of 577 gene families, and the re-
sults of our experiments are available on a companion website, accessible at
http//www.lacim.uqam.ca/~chauve/CG07.

Results. First, we found that 333 of the 577 gene trees are DS-trees. However,
without surprise, most of these families exhibit few gene duplications. For ex-
ample, 89 of these 333 families contain 4 genes and span 3 species, while only 7
of the 59 gene trees that span the 7 species are DS-trees (see the file STATS.txt
on the companion website for the complete statistics). Next, we applied to the
244 remaining gene trees (called non-DS trees from now) the heuristic described
in Section 4 to compute an upper bound on the minimum number of gene losses
needed to explain the observed gene tree. The results are summarized in the
left graphics of Figure 6, and show that many gene families can be explained
with few gene losses. We also implemented a branch-and-bound algorithm (to be

Inferring a Duplication, Speciation and Loss History 55

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 1
3

1
5

1
8

2
0

2
3

2
8

3
4

Nb of losses

N
b
 o

f
fa

m
il
ie

s

0

50

100

150

200

250

0 1 2 3 4 5 6 7 14

Heuristic-exact

N
b
 o

f
fa

m
il
ie

s

Fig. 6. Left: Distribution of the 244 gene families having a non-DS tree (y axis) accord-
ing to the number of gene losses inferred by our heuristic (x axis); Right: Distribution
of the 244 gene families having a non-DS-tree (y axis) according to the difference be-
tween the minimum number of losses needed to transform them into a DS-tree, and
the upper bound obtained by our heuristic (x axis).

described in the full version of this paper) in order to assess, on this particular
dataset, the quality of our heuristic. The results, summarized in the right graph-
ics of Figure 6, show that it performs well, as for 214 gene trees, it computed the
optimal number of gene losses. Finally, our branch-and-bound algorithm allowed
us to compute, for each gene tree that is not a DS-tree, the number of species
trees that induce a minimum number of gene losses. As shown in the table below,
in most cases, there is a unique optimal species tree.

Discussion. On the considered dataset, we found that many gene families could
be explained with few gene losses. However, as these gene families are obtained
from EST data, it is very likely that many of them are incomplete and it should
be expected that more gene losses are required to explain the true evolution of
these families. The distribution of the size of the gene families that can be ex-
plained without gene losses illustrates this point, as most of them are quite small,
while most gene families with many genes and/or genomes require significantly
more gene losses.

From an algorithmic point of view, these experiments suggest that our heuris-
tic works well and that, together with our branch-and-bound algorithm, it gives
an efficient way to compute the minimum number of gene losses to explain the
evolution of a gene family and the corresponding species tree(s). As a conse-
quence, our approach seems to be an interesting candidate to propose quickly,
for a given set of gene trees, a set of species trees (for example the species trees

Table 1. Distribution of the 244 gene families with a non-DS tree (second line) ac-
cording to the number of species trees inducing a minimum number of gene losses
(first line)

Number of species trees: 1 2 3 4 5 6 7 13 15

Number of families: 179 16 34 2 6 3 1 2 1

56 C. Chauve, J.-P. Doyon, and N. El-Mabrouk

inferred from gene trees that can be explained with few gene losses) that can be
analyzed using tree consensus or supertree methods.

6 Conclusion

We proposed in this paper a study of gene trees with a focus on duplication
and speciation events. In particular, we showed that deciding if a gene tree is a
DS-tree is not difficult, and lead to a single species tree. We also introduced a
new way to study the evolution of a gene family by minimizing the number of
gene losses. Our preliminary experimental results suggest that our approach is
worth further studies, and should be compared with the two other reconciliation
approaches based on minimizing the number of duplications and the number of
duplications and losses.

Among the algorithmic open problems that our work suggest, the most natural
is the complexity of the Subtrees Insertion Problem. In a different perspective,
preliminary results on yeast gene families show that our approach needs to be
generalized to non fully resolved gene trees (work in progress). It would also
be very useful to consider not only gene losses to complete gene trees, but also
tree rearrangement operations that could account for potential errors in the
obtained gene trees. Finally, as our approach relies on inferring a (or a set of)
species tree(s) for each gene family, it would be useful to measure the significance
of such species trees.

References

1. Arvestad, L., Berglung, A.-C., Lagergren, J., Sennblad, B.: Gene tree reconstruc-
tion and orthology analysis based on an integrated model for duplications and
sequence evolution. In: RECOMB 2004, pp. 326–335 (2004)

2. Blin, G., Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Comparing genomes with
duplications: a computational complexity point of view. IEEE/ACM Trans. on
Comput. Biol. and Bioinformatics (to appear, 2007)

3. Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene
duplications and optimizing gene family trees. J. Comput. Biol. 7(3-4), 429–444
(2000)

4. Cotton, J.A., Page, R.D.M.: Going nuclear: gene family evolution and vertebrate
phylogeny reconcilied. Proc. R. Soc. Lond. B 269, 1555–1561 (2002)

5. Durand, D., Haldórsson, B.V., Vernot, D.: A hybrid micro-macroevolutionary ap-
proach to gene tree reconstruction. J. Comput. Biol. 13(2), 320–3354 (2006)

6. Eichler, E.E., Sankoff, D.: Structural dynamics of eukaryotic chromosome evolu-
tion. Science 301(5634), 793–797 (2003)

7. Eulenstein, O., Mirkin, B., Vingron, M.: Comparison of annotating duplication,
tree mapping, and copying as methods to compare gene trees with species trees.
Mathematical hierarchies and biology, DIMACS Ser. Discrete Math. Theoret. Com-
put. Sci., Amer. Math. Soc., 37, 71–93 (1997)

8. Fares, M.A., Byrne, K.P., Wolfe, K.H.: Rate asymmetry after genome duplication
causes substantial long-branch attraction artifacts in the phylogeny of Saccha-
romyces species. Mol. Biol. Evol. 23(2), 245–253 (2006)

Inferring a Duplication, Speciation and Loss History 57

9. Gorecki, P., Tiutyn, J.: DLS-trees: a model of evolutionary scenarios. Theoretical
Comput. Sci. 359(1–3), 378–399 (2006)

10. Guigó, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient phylogenies. Mol.
Phylogenet. Evol. 6(2), 189–213 (1996)

11. Hallett, M.T., Lagergren, J.: New algorithms for the duplication-loss model. RE-
COMB 2000 , 138–146 (1996)

12. Lynch, M., Conery, J.S.: The evolutionary fate and consequences of duplicate genes.
Science 290(5494), 1151–1155 (2000)

13. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. Comput. 30(3),
729–752 (2000)

14. Sanderson, M.J., McMahon, M.M.: Inferring angiosperm phylogeny from EST data
with widespread gene duplication. BMC Evol. Biol. 7(Suppl. 1), S3 (2007)

15. Zmasek, C.M., Eddy, S.R.: A simple algorithm to infer gene duplication and spe-
ciation events on a gene tree. Bioinformatics 17(9), 821–828 (2001)

16. Zhang, L.: On a Mirkin-Muchnik-Smith conjecture for comparing molecular phy-
logenies. J. Comput. Biol. 4(2), 177–187 (1997)

How to Achieve an Equivalent Simple

Permutation in Linear Time

Simon Gog and Martin Bader

University of Ulm, Institute of Theoretical Computer Science, 89069 Ulm, Germany
simon.gog@uni-ulm.de, martin.bader@uni-ulm.de

Abstract. The problem of Sorting signed permutations by reversals is a
well studied problem in computational biology. The first polynomial time
algorithm was presented by Hannenhalli and Pevzner in 1995 [5]. The
algorithm was improved several times, and nowadays the most efficient
algorithm has a subquadratic running time [9,8]. Simple permutations
played an important role in the development of these algorithms. Al-
though the latest result of Tannier et al. [8] does not require simple
permutations the preliminary version of their algorithm [9] as well as the
first polynomial time algorithm of Hannenhalli and Pevzner [5] use the
structure of simple permutations. However, the latter algorithms require
a precomputation that transforms a permutation into an equivalent sim-
ple permutation. To the best of our knowledge, all published algorithms
for this transformation have at least a quadratic running time. For fur-
ther investigations on genome rearrangement problems, the existence of
a fast algorithm for the transformation could be crucial. In this paper,
we present a linear time algorithm for the transformation.

1 Introduction

The problem of Sorting signed permutations by reversals (SBR) is motivated
by a genome rearrangement problem in computational biology. The task of the
problem is to transform the genome of one species into the genome of another
species, containing the same set of genes but in different order. As transformation
step, only reversals (also called inversions) are allowed, where a section of the
genome is excised, reversed in orientation, and reinserted. This is motivated by
the fact that reversals are the most frequent rearrangement operations in nature,
especially for bacterial genomes. The problem can be easily transformed into
the mathematical problem of sorting a signed permutation (i.e. a permutation of
the integers 1 to n, where each element has an additional orientation) into the
identity permutation. The elements represent the genes of the genome (or any
other kind of marker), whereas the signs indicate the strandedness of the genes.
As shorter rearrangement scenarios are biologically more plausible than longer
ones, one is interested in a minimum sequence of reversals that transforms one
permutation into the identity permutation.

SBR is a well studied problem in computational biology, and the first polyno-
mial time algorithm was presented by Hannenhalli and Pevzner in 1995 [5]. The

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 58–68, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

How to Achieve an Equivalent Simple Permutation in Linear Time 59

algorithm was simplified several times [4,6], and the reversal distance problem (in
which one is only interested in the number of required reversals) can be solved
in linear time [1,3]. In 2004, Tannier and Sagot presented an algorithm for SBR
that has subquadratic time complexity [9]. This algorithm first transforms the
given permutation π into an equivalent simple permutation π̂ and then calculates
a sorting for π̂. This sorting is subsequently used to sort π. In literature, there
are several algorithms for this transformation [5,4], but all of them have at least
quadratic time complexity (there is an unpublished linear time algorithm by
Tannier and Sagot which uses another technique than our algorithm, personal
communication). Although Tannier et al. improved their algorithm such that it
does no longer require simple permutations [8], a fast algorithm for the trans-
formation could be crucial for further investigations on genome rearrangements.
In this paper, we will provide a linear algorithm for transforming a permutation
into an equivalent simple permutation.

2 Preliminaries

A signed permutation π = 〈π1, . . . , πn〉 is a permutation of the integers 1 to n,
where each element π is assigned a positive (−→π) or negative (←−π) orientation.
A reversal ρ(i, j) reverses the order and flips the orientation of the elements
between the i-th and j-th element of the permutation. For example, ρ(3, 5)
transforms π = 〈−→1 ,

−→
2 ,

←−
5 ,

←−
4 ,

←−
3 ,

−→
6 〉 into id =〈−→1 ,

−→
2 ,

−→
3 ,

−→
4 ,

−→
5 ,

−→
6 〉. The lat-

ter permutation is called identity permutation of size 6. The problem of sorting
by reversals asks for a minimal sequence of reversals ρ1, . . . , ρk that transforms a
signed permutation π into the identity permutation. The length k of a minimal
sequence is called the reversal distance d(π).

The main tool for the solution of the problem of sorting by reversals is the
reality-desire diagram (also called breakpoint graph [2,7]; see Fig. 1 for an exam-
ple). The reality-desire diagram RD(π) of a permutation π = 〈π1, . . . , πn〉 can
be constructed as follows. First, the elements of π are placed from left to right on
a straight line. Second, each element x of π with positive orientation is replaced
with the two nodes 2x−1 and 2x, while each element x with negative orientation
is replaced with 2x and 2x − 1. We call these nodes co-elements of x where the
first is called left node of x and the other the right node of x. Third, we add a
single node labeled with 0 to the left of the left node of the first element and add
a single node labeled with 2n + 1 to the right of the right node of the last ele-
ment. Fourth, reality edges are drawn from the right node of πi to the left node
of πi+1 (1 ≤ i < n), from node 0 to the left node of π1, and from the right node
of πn to node 2n + 1. Fifth, desire edges are drawn from node 2i to node 2i + 1
(0 ≤ i ≤ n). We can interpret reality edges as the actual neighborhood relations
in the permutation, and desire edges as the desired neighborhood relations. The
position of a node v is its position in the diagram and denoted by pos(v) (i.e. the
leftmost node has the position 0, the node to its right has the position 1, and so
on). As each node is assigned exactly one reality edge and one desire edge, the
reality-desire diagram decomposes into cycles. The number of cycles in RD(π)

60 S. Gog and M. Bader

0 1 2 3 4 5 6 7 8 9 10 11 12 13

6 3 4 1 2 9 10 12 11 8 7 1350

v1 v2 v3 v4 v6v7 v8 v9

C

v5 v10

Fig. 1. A reality-desire diagram RD(π) for π = 〈−→3 ,
−→
2 ,

−→
1 ,

−→
5 ,

←−
6 ,

←−
4 〉 . The first row

of numbers are the labels of the nodes, the second are the positions. The third row
contains the labeling of nodes of the long cycle C.

is denoted by c(π). The length �j of a cycle Cj is the number of desire edges. If
�j is smaller than 3 we call Cj a short cycle, otherwise a long cycle.

We label the nodes of a cycle Cj as follows. The leftmost node is called v[j]1,
then we follow the reality edge to node v[j]2, then follow the desire desire edge
to node v[j]3, and so on. We label the reality edge from node n[j]2i−1 to n[j]2i

with b[j]i (1 ≤ i ≤ �j) and the desire edge from node n[j]2i to n[j](2i+1) with
g[j]i (1 ≤ i < �j). The desire edge from node n[j]2� to n[j]1 is labeled with g[j]�j .
If the cycle index j of Cj is clear from the context we omit it.

A desire edge g = (v1, v2) is called oriented if the positions of v1 and v2 in
the diagram are both even or odd, otherwise we call g unoriented. A cycle which
contains no oriented edges is called unoriented, otherwise oriented.

Two desire edges (v1, v2) and (w1, w2) interleave if the endpoints of the in-
tervals Iv = [pos(v1), pos(v2)] and Iw = [pos(w1), pos(w2)] are alternating. Two
cycles C1 and C2 are interleaving if there exist interleaving desire edges f ∈ C1

and g ∈ C2. A maximal set of interleaving cycles in RD(π) is called a compo-
nent. A component is unoriented if it contains no oriented cycles, otherwise it
is oriented.

Hannenhalli and Pevzner found some special structures that depend on un-
oriented components called hurdles and fortress. The distance formula for the
reversal distance is

d(π) = n + 1 − c(π) + h(π) + f(π)

where h(π) is the number of hurdles in RD(π) and f(π) the indicator variable
for a fortress (for details see [5]).

The original Hannenhalli-Pevzner algorithm [5] aswell as the subquadratic algo-
rithm of Tannier and Sagot [9] require a permutation whose reality-desire diagram
contains only short cycles. Such a permutation is called a simple permutation. Han-
nenhalli and Pevzner showed that every permutation π can be transformed into an
equivalent simple permutation π̂, i.e. a simple permutation with d(π̂) = d(π), by
padding additional elements to π. Moreover, a sorting sequence of π̂ can be used to
obtain a sorting sequence of π by ignoring the padded elements.

How to Achieve an Equivalent Simple Permutation in Linear Time 61

3 Creating Equivalent Simple Permutations Revisited

We first focus on the creation of simple permutations before we discuss the
creation of equivalent simple permutations. If a permutation π = π(0) has a
long cycle, Hannenhalli and Pevzner [5] transform it into a new permutation
π(1) by ,“breaking” this cycle into two smaller ones. This step is repeated until
a simple permutation π(k) is achieved.

On the reality-desire diagram the ,“breaking of a cycle” can be described
as follows. Let b = (vb1, vb2) be a reality edge and g = (vg1, vg2) a desire edge
belonging to a cycle C = (. . . , vb1, vb2, . . . , vg1, vg2, . . .) in RD(π(i)). A (b, g)-split
of RD(π(i)) produces a new diagram R̂D(π) = RD(π(i + 1)) which is obtained
from RD(π(i)) by:

1. removing edges b and g,
2. adding two new vertices x and y,
3. adding two new reality edges (vb1, x) and (y, vb2),
4. adding two new desire edges (vg1,x) and (y,vg2).

Two examples of such splits are illustrated in Fig. 2. As a result of the split the
cycles (. . . , vb1, x, vg1, . . .) and (. . . , vb2, y, vg2, . . .) are created.

The effect of a (b, g)-split on the permutation can be described as follows. x
and y are the nodes of a new element which lies between the consecutive elements
previously connected by g. That is, we now consider generalized permutations
which consists of arbitrary distinct reals instead of permutations of integers.
Hannenhalli and Pevzner called the effects of a (b, g)-split on the permutation
a (b, g)-padding. We will only use the term (b, g)-split as the two concepts are
equivalent.

A (b, g)-split is safe if b and g are non-incident, and π(i) and π(i+1) have the
same number of hurdles; i.e. h(π(i)) = h(π(i + 1)). The first condition assures
that we do not produce a 1-cycle and a cycle with the same size as the old
cycle. Because a split is acting on a long cycle, the first condition is easy to
achieve. The second condition assures that the reversal distances of π(i) and
π(i + 1) are equal (note that a split increases both n and c by one, and the
fortress indicator cannot be changed without changing the number of hurdles).
The following lemma shows that to fulfill the second condition, it is sufficient to
ensure that the resulting cycles belong to the same component.

Lemma 1 ([5]). Let a (b, g)-split break a cycle C in RD(π(i)) into cycles C1

and C2 in RD(π(i + 1)). Then C is oriented if and only if C1 or C2 is oriented.

In other words, if we do not split a component into two components, the orienta-
tion of the component is not changed. For the constructive proof of the existence
of safe splits we need the following lemma.

Lemma 2 ([5]). For every desire edge g that does not belong to a 1-cycle, there
exists a desire edge f interleaving with g in RD(π). If C is a cycle in RD(π)
and f �∈ C then f interleaves with an even number of desire edges in C.

62 S. Gog and M. Bader

C
C

v1 v2 v3 v4 v6v7 v8 v9v5 v10 v1 v2 v3 v4 xy v5v6v7 v8 v9v10

(b)

v1 v2 v3 v9v10v5v6v8v7v4x y

CC

v1 v2 v3 v4 v6v7 v8 v9v5 v10

(a)

Fig. 2. (a) An unsafe (b, g)-split with b = (v3, v4) and g = (v1, v10) that produces a
new hurdle. (b) A safe (b, g)-split with b = (v5, v6) and g = (v2, v3), that does not
produce any new components.

And for the linear time algorithm we need the following corollary.

Corollary 1. Let C be a cycle of length � > 1 in RD(π) with desire edges g1

to g�. If these desire edges are pairwise non-interleaving, then there exists a gj

with 1 ≤ j < � and a cycle C′ �= C with a desire edge f , such that f interleaves
both gj and g�.

Proof. As C has no pairwise interleaving desire edges, g� does not interleave
with another desire edge of C. So Lemma 2 implies that g� interleaves with a
desire edge f of another cycle C′. Because f is not in C, it interleaves with an
even number of desire edges in C. It follows that f interleaves with at least one
more desire edge gj (1 ≤ j < �) of C.

Theorem 1 ([5]). If C = (. . . , v1, . . . , v2�, . . .) is a long cycle in RD(π), then
there exists a safe (b, g)-split acting on C.

The proof given in [5] is constructive. However, the construction cannot trans-
form the whole permutation into a simple permutation in linear time (which is
the goal of our paper). Therefore, in Section 5, we provide an algorithm that
achieves this goal in linear time.

4 The Data Structure

We represent the reality-desire diagram as a linked list of 2n+2 nodes. The data
structure node for each node v consists of the three pointers reality (pointing
to the node connected with v by a reality edge), desire (pointing to the node
connected with v by a desire edge), and co element (pointing to the co-element
of v), and the two variables position (the position w.r.t. the leftmost node in
the diagram), and cycle (the index j of cycle Cj the node belongs to).

We can initialize this data structure for every permutation in linear time.
First, the initialization of reality, co element, and position can be done
with a scan through the permutation. Second, for the initialization of desire we
need the inverse permutation (mapping the nodes ordered by their label to their

How to Achieve an Equivalent Simple Permutation in Linear Time 63

position) which can also be generated in linear time. Finally, we can initialize
cycle by following the reality and desire edges which also takes linear time.

Given a reality edge b = (vb1, vb2) and a desire edge g = (vg1, vg2), a (b, g)-
split can be performed in constant time (see Algorithm 1) if we disregard the
problem that we have to update the position variables of the new nodes and
all the nodes that lie to the right of b. Fortunately, we need position only to
determine if two edges of the same cycle interleave, thus it is sufficient if the
relative positions of the nodes of each cycle are correct. This information can
be maintained if we set the positions of the new nodes x and y to the positions
of the old nodes of b which are now non-incident to x or y. After performing
all splits, the reality-desire diagram can easily be transformed into the simple
permutation by following desire edges and co-element pointers.

Algorithm 1. (b,g)-split
1: function bg-split(b = (vb1, vb2), g = (vg1, vg2))
2: create new nodes x, y
3: vb1.reality = x; vb2.reality = y {adjust reality and desire edges}
4: x.reality = vb1; y.reality = vb2

5: vg1.desire = x; vg2.desire = y
6: x.desire = vg1; y.desire = vg2

7: x.position = vb2.position; y.position = vb1

8: return(x, y)

5 The Algorithm

We now tackle the problem of transforming a permutation into an equivalent
simple permutation in linear time. The algorithm has two processing phases.

Phase 1
Our goal in the first phase is to create short cycles or cycles that have no inter-
leaving desire edges. We achieve this goal with a scanline algorithm. The algo-
rithm requires two additional arrays: left[j] stores the leftmost node of each
cycle Cj and next[j] stores the right node of the desire edge we are currently
checking for interleavings. In both arrays, all variables are initialized with UNDEF.
In the following, vs denotes the current position of the scanline. Before we de-
scribe the algorithm, we will first provide an invariant for the scanline.

Invariant: If gi is a desire edge of the long cycle Cj with i < �j, and both nodes of
gi lie to the left of vs, then gi does not intersect with any other desire edge of Cj .

It is clear that a cycle Cj has no interleaving edges if the invariant holds
and the scanline passed the rightmost node of Cj : g�j does also not interleave
with a desire edge of Cj because the interleaving relation is symmetric. As vs is
initialized with the leftmost node of RD(π), the invariant holds in the beginning.

64 S. Gog and M. Bader

While the scanline has not reached the right end of the diagram, we repeat to
analyze the following cases:

Case 1.1 vs is part of a short cycle.
We move the scanline to the left node of the next reality edge. As the in-
variant only considers long cycles, the invariant is certainly preserved.

Case 1.2 vs is part of a long cycle Cj and next[j]=UNDEF.
That is, vs is the leftmost node of cycle Cj . So we set left[j]=vs. To check
whether g1 = (v2, v3) interleaves with another desire edge, we store the right
node of g1 in next[j] and move vs to the left node of the next reality edge.
Both nodes passed by the scanline (i.e. v1 and v2) are the left nodes of a
desire edge, so the set of desire edges that lie completely to the left of vs is
not changed and the invariant is preserved.

Case 1.3 vs is part of a long cycle Cj and next[j] �= vs.
Let next[j] be the node v2k+1, i.e. we check for a desire edge that interleaves
with gk (going from node v2k to node v2k+1). As pos(v1) < pos(v2k) <
pos(vs) < pos(v2k+1), there must be a desire edge gm belonging to Cj that
interleaves with gk. We now distinguish three cases:
(a) gk is not g1 (for an example, see Fig. 3).

We perform a (b, g)-split with b = bk+1 and g = gk−1. That is, we split
the 2-cycle (v2k, v2k+1, x, v2k−1) from Cj . This split is save since gk now
lies in the 2-cycle that still interleaves with gm, which belongs to Cj .
The right node of the new gk−1 in Cj is y, so we adjust next[j] to y.

(b) gk is g1 and gk interleaves with g�j (see Fig. 4).
We perform a (b, g)-split with b = b1 and g = g2. That is, we split
the 2-cycle (v2, v3, v4, y) from Cj . This split is save since g1 now lies
in the 2-cycle that still interleaves with g�j , which belongs to Cj . Now,
g1 = (x, v5), so we set next[j]=v5. Note that v5 cannot be to the left of
vs, as vs is the leftmost node that belongs to Cj and has an index ≥ 4.

(c) gk is g1 and gk does not interleave with g�j (see Fig. 5).
It follows that gm �= g�j . We perform a (b, g)-split with b = b2 and
g = g�j . That is, we split the 2-cycle (v2, v3, x, v1) from Cj . This split
is save since g1 now lies in the 2-cycle that still interleaves with gm. As
the old leftmost node and reality edge of Cj lie in the 2-cycle we set
next[j] = UNDEF which forces the re-initialization of left[j] with vs

and next[j].
In all of these cases, we do not create a desire edge that lies completely to
the left of vs, so the invariant is preserved.

Case 1.4 vs is part of a long cycle Cj and next[j]=vs.
That is, we reach the right node of a desire edge gk. It follows that gk

does not interleave which any other desire edge of Cj since we have not
detected a node of Cj between the left and right node of gk. Thus moving
vs to the right preserves the invariant. The next desire edge to check is
gk+1 = (v2(k+1), v2(k+1)+1), so we set next[j] to the right node of gk+1 and
move vs to the left node of the next reality edge.

How to Achieve an Equivalent Simple Permutation in Linear Time 65

v1 v2 v3 v4 viv1 v2 v3 v4 vi

gmgm

v1 v2 v3 v4 v5vi v6x yv1 v2 v3 v4 v5 v6vi

gmgm

g1

g1

g2

g2

b3

b3

v5v6 v5v6 y x

(b, g) − split

(b, g) − split

(i)

(ii)

Fig. 3. Case 1.3 (a): (i) gk = g2 is unoriented or (ii) oriented

v1 v2

g1

g�j

v�jvi v3v4

v1 v2

g1

g�j

v3 v4v�jvi v2 v3 v4v�jviv1 x y

g�j

v2 v�jviv1 x y

g�j

v4 v3

(b, g) − split

(b, g) − split

(i)

(ii)

Fig. 4. Case 1.3 (b): (i) g1 is unoriented or (ii) oriented

We will now analyze the running time of the first phase. In each step we either
move the scanline further right (cases 1.1, 1.2, and 1.4) or perform a save (b, g)-
split (cases 1.3(a), 1.3(b), and 1.3(c)). As we can perform at most n splits and
the resulting diagram can have at most 2n reality edges, we have to perform at
most 3n steps. Each step takes constant time.

Phase 2. After phase 1 we can assure that there remain only short cycles and
long cycles with pairwise non-interleaving desire edges. These long cycles have a
special structure. The positions of the nodes v1, . . . , v2�j of a cycle Cj are strictly
increasing and so the first �j − 1 desire edges gi (i < �j) lie one after another.
g�j connects the leftmost and rightmost node of Cj . As we know from Corollary
1 there exists a desire edge f of a cycle C′ �= Cj that interleaves with g�j and
another desire edge gk of Cj .

We can detect this gk by first determining a desire edge f which has a node
in the interval Ij = [pos(v1), pos(v2�j)] and interleaves with g�j . Second, we get
the gi that interleaves with f by checking for every desire edge �= g�j whether
it interleaves with f . As I is decomposed by the intervals of the desire edges in
distinct areas, we get the corresponding gi in at most �j steps.

66 S. Gog and M. Bader

v1 v2 vi v3 v4

g�j

g1

b1

gm

(b, g) − split

(b, g) − split

v1 v2 viv1 v2 vi

g�j

g1

b1

v3v4

gm

v4 v3xy

gm

v1 v2 vi v3

g�j

g1 gm

v4x y

(i)

(ii)

Fig. 5. Case 1.3 (c): (i) g1 is unoriented or (ii) oriented

Clearly, the second step takes
∑c(π)

j=1 �j = O(n) time. In the first step, we use
a stack based algorithm to achieve a linear running time. In each step of the
algorithm, the stack will contain a set of intervals Ij of cycles Cj , such that each
interval on the stack is completely contained in all other intervals that are below
it on the stack (i.e. the topmost interval is contained in all other intervals on the
stack). We scan the reality-desire diagram from left to right. For each node v, we
check whether its desire edge f = (v, w) interleaves with the topmost interval Ij

of the stack. If so, we report the interleaving edges f and g�j , pop Ij from the
stack, check whether f interleaves with the new top interval, and so on, until f
does not interleave with the top interval. As the top interval is contained in all
other intervals of the stack and Lemma 2 ensures that we find an interleaving
edge before we reach the right end of the interval (i.e. v is contained in the
topmost interval), f cannot interleave with any other interval on the stack. If v
is the leftmost node of a cycle Cj , we push Ij on the stack (note that this interval
is equivalent to the desire edge g�j , so it does not interleave with the topmost
interval and is therefore contained in it). In all cases, we continue by moving the
scanline one node to the right. The algorithm stops when we have reached the
right end of the diagram. During the algorithm, we push the interval Ij of each
cycle Cj on the stack, and pop this cycle when we reach a node v in Ij such that
the desire edge (v, w) interleaves with Ij . As this node must exist for each cycle
(see Lemma 2), we find for each cycle Cj an edge that interleaves with g�j .

After finding all gk’s we distinguish two cases for a save (b, g)-split:

Case 2.1 g�j−1 �= gk (see Fig. 6(i)).
We perform the (b, g)-split on C with b = (v1, v�) and g = (v3, v4). We get
C1 = (v1, v2, v3, a) and C2 = (v�, v�−1, . . . , v4, b). As f interleaves with g1

which is now part of C1 and gi which is now part of C2 the component
structure remains the same.

Case 2.2 g�j−1 = gk (see Fig. 6(ii)).
We perform the (b, g)-split on C with b = (v3, v2) and g = (v�, v�−1). We
get C1 = (v1, v2, b, v�) and C2 = (a, v3, v4, . . . , v�−1). As f interleaves with
g1 which is now part of C1 and gi which is now part of C2 the component
structure remains the same.

How to Achieve an Equivalent Simple Permutation in Linear Time 67

v1 v2 v1

g�j

g1

f f

b�j

v1 v2 v1

g�j

g1

b1

f

g�j−1

f

v2 y v2�jx

v2 x y v2�j

(b, g) − split

(b, g) − split

(i)

(ii)

Fig. 6. (i) depicts Case 2.1 and (ii) Case 2.2

In both cases, gk becomes a desire edge of the cycle C2, and f intersects both
gk and g�′ (where �′ is the length of C2). Thus we do not have to recalculate
the edge gk, and can repeat this step on C2 until the remaining cycles are all
2-cycles. The pseudo code of the whole algorithm is presented in Appendix A.
An implementation in C++ can be obtained from the authors.

References

1. Bader, D., Moret, B., Yan, M.: A linear-time algorithm for computing inversion
distance between signed permutations with an experimental study. Journal of Com-
putational Biology 8, 483–491 (2001)

2. Bafna, V., Pevzner, P.: Genome rearrangements and sorting by reversals. SIAM
Journal on Computing 25(2), 272–289 (1996)

3. Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and
fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004.
LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)

4. Berman, P., Hannenhalli, S.: Fast sorting by reversals. In: Hirschberg, D.S., Meyers,
G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 168–185. Springer, Heidelberg (1996)

5. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip: polynomial algo-
rithm for sorting signed permutations by reversals. Journal of the ACM 46(1), 1–27
(1999)

6. Kaplan, H., Shamir, R., Tarjan, R.E.: A faster and simpler algorithm for sorting
signed permutations by reversals. SIAM Journal on Computing 29(3), 880–892
(1999)

7. Setubal, J., Meidanis, J.: Introduction to Computational Molecular Biology. PWS
Publishing Company (1997)

8. Tannier, E., Bergeron, A., Sagot, M.-F.: Advances on sorting by reversals. Discrete
Applied Mathematics 155, 881–888 (2007)

9. Tannier, E., Sagot, M.-F.: Sorting by reversals in subquadratic time. In: Sahinalp,
S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp.
1–13. Springer, Heidelberg (2004)

68 S. Gog and M. Bader

A Code

Algorithm 2. Equivalent transformation in a simple permutation into linear
time
1: read π and construct the reality-desire diagram RD(π)
2: mark and count cycles in RD(π)
3: left[1..c(π)] := {undef, . . . ,undef}; next[1..c(π)] := {undef, . . . ,undef}
4: set scanline vs to the leftmost node of RD(π)
5: while vs �= nil do
6: j:=vs.cycle
7: if vs is part of a short cycle then
8: vs := vs.reality.co element
9: else if next[j] = undef then {we reach the leftmost point of cycle Cj}

10: left[j] := vs

11: next[j] := vs.reality.desire
12: vs := vs.reality.co element
13: else if vs = next[j] then {i.e. gi does not interleave with edge from Cj}
14: next[j] := vs.reality.desire
15: vs := vs.reality.co element
16: else if gk is not g1 then
17: (x,y):=bg-split(bk+1,gk−1)
18: next[j] := y
19: else if gk interleaves with g�j then
20: (x,y):=bg-split(b1,g2)
21: next[j] := v5

22: else {gk does not interleave with g�j}
23: bg-split(b2,g�j)
24: next[j] := undef

25: calculate the absolute position for each node in RD(π′)
26: create stack ACTIVE CYCLE
27: set scanline vs to the leftmost node of RD(π′)
28: while vs �= NIL do
29: while ACTIVE CYCLE is not empty do
30: g�:=ACTIVE CYCLE.top
31: if (vs, vs.desire) or (vs.reality, vs.reality.desire) interleaves with g�

then
32: determine gk

33: ACTIVE CYCLE.pop
34: else
35: break
36: if vs is the leftmost node of a long cycle then
37: ACTIVE CYCLE.push((vs, vs.desire))
38: vs := vs.reality.co element

39: for each node vi do
40: if vi is the leftmost node of a long cycle Cj then
41: if g�j−1 �= gk then
42: bg-split(b1, g�j−1)
43: else
44: bg-split(b�j ,g1)

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 69–82, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Baculovirus Phylogeny Based on Genome
Rearrangements

Daniel Goodman1, Noah Ollikainen2, and Chris Sholley1

1 Dept. of Bioengineering, Univerity of California, San Diego
2 Dept. of Biology, University of California, San Diego

Abstract. Deriving phylogeny of rapidly evolving viral genomes is one of the
most challenging problems in evolutionary studies since gene-based
phylogenies often produce conflicting evolutionary trees. Phylogenetic
reconstruction methods that consider whole genomes are becoming more
reliable with the increasing availability of complete genome sequences and the
development of algorithms to compare entire genomes. Here we employ a gene
rearrangement-based approach to study Baculovirus phylogeny. Since genome
rearrangement algorithms require the set of genes shared between all genomes,
the most challenging problem in analyzing rapidly evolving genomes is
generating this set of genes. Indeed, there are fewer and fewer genes shared
between N species as N increases. We address this challenge by iteratively
considering smaller sets of related genomes to find conserved genes.
Baculovirus was chosen as a test case because a large number of its constituent
genomes have been sequenced and its evolutionary relationships are well
studied. The resulting phylogenies show clear separation of Baculoviridae into
Nucleopolyhedrovirus (NPV) and Granulovirus (GV) as well as the separation
of NPVs into groups I and II. Further species separation results in phylogenetic
relationships that are largely consistent with conventional gene-based
approaches, with some differences that provide insight into the rearrangements
of Baculoviridae genomes. Our open source software, MULGOR (MULtiple
Genome Order), which analyzes genes shared between multiple small rapidly
evolving genomes, is available at http://realm.sdsc.edu/MULGOR/.

1 Introduction

Traditionally, construction of phylogenetic trees is performed by aligning single
genes [15]. However, the usefulness of individual genes in species phylogeny can be
limited [24]. Performing sequence alignments of different genes can give conflicting
phylogenies. In the case of some rapidly evolving genes, orthologs can be so
divergent that their similarities are indistinguishable from randomness [1]. Comparing
whole genomes often yields more accurate results for constructing evolutionary trees.

1.1 Phylogenomics and Genome Rearrangement

The availability of whole genome sequences has increased over the past decade, and
these data have provided unprecedented insight into eukaryotic, bacterial, archaeal,
and viral evolutionary relationships [16]. Recent sequencing of complete genomes has

70 D. Goodman, N. Ollikainen, and C. Sholley

led to an explosion of phylogenomics: addressing evolutionary problems by
considering entire genomes, instead of individual genes [19]. Events that affect the
whole genome, as opposed to those that affect single genes, are far less common and
thus are more useful for determining phylogeny [24]. These phylogenomic markers
have the potential for overcoming many of the problems commonly associated with
gene-based phylogenetic analysis.

Analyzing phylogeny by genome rearrangement involves comparing the order of
genes in whole genomes to extract phylogeny [2], [3], [8], [10], [21], [22], [26]. An
advantage of this method is its reliance on rare evolutionary events with low
homoplasy [24].

1.2 Application to Viral Genomes

Previous studies have focused mainly on mammalian genomes [19], leaving viral
evolution poorly addressed. Recent studies of viral evolution were based on
concatenating all orthologous genes and performing a global sequence alignment
[12]. This technique improves accuracy (as compared to single gene analysis) but still
does not eliminate all associated problems, especially when dealing with long,
distantly related genomes. An alternative technique measures similarity between
species by the number of genes that they have in common [27]. This method may
produce incorrect phylogenetic relationships in lineages with frequent horizontal gene
transfer or rapid gene loss [28].

Hannenhalli et. al., 1995 [10] was the only previous study of viral genomes that
used the multiple genome rearrangement method, and was limited to the few
herpesvirus genomes available at that time. In the last ten years the number of fully
sequenced virus genomes has increased by an order of magnitude, enabling
phylogenomic studies of various viruses. About 500 complete double stranded DNA
virus genomes are now available from GenBank. The evolutionary volatility of these
genomes and their relatively small size (typically less than 400kb) make them good
test cases for phylogenomic analysis. We chose baculoviridae as a test family because
their evolutionary relationships are well studied [12], [13], [14].

Previous whole-genome studies of Baculovirus phylogeny [12] used a measure
called breakpoint distance [3] that considers the number of adjacent genes shared
between genomes. Here we use the inversion distance measure derived from the elegant
Hannenhalli-Pevzner theory [9], which considers actual rearrangements in the genome
and in so doing correlates more closely with biological events. Phylogenies using
inversion distance have been found to be more accurate than breakpoint analysis [18].
Additionally, analysis of inversions suggests evolutionary scenarios at the level of
specific rearrangement events and defines a hypothetical ancestral organization [9].

1.3 Finding Shared Genes Presents Key Challenge

When tracking only genome rearrangments, all genomes must be represented in the
same alphabet of gene homologs, each gene under consideration must appear once
and only once per genome. If a homolog is missing, or present multiple times, it must
be removed from all genomes [31]. This has the potential to greatly reduce the
number of genes considered, which can in turn reduce the resolution and potentially
the accuracy of the phylogeny.

 Baculovirus Phylogeny Based on Genome Rearrangements 71

While this problem does not significantly affect the analysis of large genomes (like
mammals) it presents a bottleneck for analyzing viruses and other small genomes.
Hannenhalli et al. [10] were able to construct their herpesvirus phylogeny without
addressing this problem since the number of genomes they studied was small.
However, their method does not scale for the 32 Baculovirus genomes examined here:
a smaller number of genes are shared between these genomes and thus fewer
rearrangements are found.

Multiple genome rearrangement only works when the set of shared genes is not
controversial [29]. Indeed, finding sets of orthologous genes conserved between all
genomes is one of the key challenges in computing phylogeny by this method [30]. The
difficulty is compounded when deletions, horizontal transfer, and duplication of genes
are taken into account. Our software, MULGOR, automates the discovery of sets of
orthologous genes among multiple small genomes, removing the need for manual
annotation of these sets or the removal of paralogous groups from consideration.

Sankoff’s exemplar method [25] tackles the problem of paralogous genes by
removing all but one paralog from each genome such that the reversal distance
between these two remaining genes is minimized. This problem was found to be NP-
hard [6], although heuristic approaches exist. Because we consider paralogs from
more than two genomes at a time, and consider many sets of paralogs simultaneously,
our method chooses ‘exemplar’ genes based on sequence similarity instead of
optimized reversal distance.

Some methods that detect orthologous, such as INPARANOID [23], work on pairs
of genomes only. While OrthoMCL [17] is robust and functions on multiple large
eukaryotic genomes, we chose to implement a faster and less complex graph-theoretic
approach, which works on flat-files and does not require relational databases, to deal
with these much smaller viral genomes. It is assumed that our method would not
perform as well on larger genomes with more paralogs. If MULGOR was to be
expanded to support larger genomes, the integration of an algorithm like OrthoMCL
would likely be ideal.

To deal with a lack of gene conservation (genes present in most but not all
genomes), our automated method increases the granularity of gene ordering by
considering smaller subgroups of genomes with more shared genes.

1.4 Baculoviridae

The family Baculoviridae has many qualities that make it an interesting and useful test
case. The family has a history of horizontal gene transfer and variable rates of mutation
between genes that result in discrepancies in single-gene phylogeny [12]. Baculoviruses
have speciated on a lengthy evolutionary timeline, and a significant amount of genome
rearrangement has occurred between members of the family with different arthropod
hosts. Previous baculoviridae studies have employed a variety of methods for
phylogenetic reconstruction based on gene content, gene sequence and relative
breakpoint distance [12], [13], [14]. This study is the first rearrangement-based analysis
on this family. Additionally, over twenty percent of the completely sequenced
Baculoviridae genomes were published in the last year alone. This study incorporates
these new genomic sequences to study Baculoviridae phylogeny.

72 D. Goodman, N. Ollikainen, and C. Sholley

2 Materials and Methods

2.1 Detection of Orthologous Gene Clusters

The genome sequences of thirty-two Baculoviruses were obtained from NCBI
(Table 1). Prior to determining the relative gene orders of a given set of geno-
mes, genes conserved across all genomes were identified via single-linkage
clustering, in a method similar to BLASTCLUST (unpublished, available at http://
www.ncbi.nlm.nih.gov/ BLAST/docs/blastclust.html). In this method, each gene was
represented as a vertex, and an edge was placed between two vertices if the e-value of
their alignment was lower than the cutoff. After all genes were compared, a cluster
was defined by the genes representing a connected component in the resulting graph.
Clusters that contained at least one gene for every genome considered were kept.
While we did not use BLASTCLUST, because it does not save each BLASTP score
and does not always perform every pair-wise comparison, our method is basically a
reimplementation of the BLASTCLUST algorithm.

Because of duplication and paralogous sets of genes, a second level of homology
detection was employed. After initial clustering, larger clusters that contained more
than one gene per genome were ‘pruned’ using a second algorithm described in the
following section. An e-value cutoff was chosen manually to minimize cluster overlap
and generate the greatest number of ideally sized clusters. For Baculovirus cluster
iterations, this e-value was 1e-12. This ideal value varies for different datasets, but
tests with Poxviridae and Herpesviridae (data unpublished) suggest that this value
works well for many large viral genomes.

2.2 Cluster Pruning

To find rearrangements between some closely-related genomes, it was necessary to
include the larger clusters that would otherwise be ignored via the method outlined
above. A second algorithm was used to break up and then prune these large clusters.
The algorithm models each cluster as a graph where all genes are vertices and all pair-
wise BLAST scores are weighted undirected edges (asymmetric scores are averaged).

Clusters in which every genome is present more than twice represent multiple similar
sets of orthologs, and these clusters were first broken up via the following method. It
was observed that edges on these largest graphs fall into two groups: high weight edges
(higher than the mean) within closely related sub-clusters and low weight edges (lower
than the mean) between different sub-clusters. Those falling into the latter group were
removed from the graph, leaving multiple disconnected subgraphs. The subgraphs that
contained at least one gene from every genome were kept.

After breaking up these ‘mega-clusters’ into subgraphs, a modified version of
Prim's algorithm [7] was run to ‘prune off’ paralogs. We took the highest weighted
edges, not the least, and as an extra constraint on expanding the tree, only chose
vertices that represented a gene from a genome that was not already present in the
tree. The algorithm finished when the tree contained vertices representing one gene
from each genome. This was a heuristic approach that nevertheless returned the
strongest subsets in all observed cases. In this fashion, multiple usable clusters were
extracted from one larger cluster that contained paralogs and multiple ortholgous sets.

 Baculovirus Phylogeny Based on Genome Rearrangements 73

Table 1. Baculovirus Accessions

Species
Genome
nt Accession

Date
Created

L. dispar nucleopolyhedrovirus (LdMNPV) 161,046 NC_001973 11/3/1998
Xestia c-nigrum granulovirus (XcGV) 178,733 NC_002331 6/7/2000
Trichoplusia ni SNPV virus 134,394 NC_007383 9/7/2005
H. armigera nucleopolyhedrovirus G4 (HaSNPV) 131,403 NC_002654 1/25/2001
Choristoneura fumiferana MNPV 129,593 NC_004778 5/6/2003
Agrotis segetum nucleopolyhedrovirus 147,544 NC_007921 3/27/2006
Agrotis segetum granulovirus 131,680 NC_005839 4/9/2004
Mamestra configurata nucleopolyhedrovirus B 158,482 NC_004117 8/25/2002
Mamestra configurata NPV-A 155,060 NC_003529 3/29/1997
Autographa californica nucleopolyhedrovirus
(AcMNPV) 133,894 NC_001623 7/16/1994
Bombyx mori nucleopolyhedrovirus (BmNPV) 128,413 NC_001962 1/18/1996
Cydia pomonella granulovirus (CpGV) 123,500 NC_002816 4/2/2001
Culex nigripalpus Baculovirus (CuniNPV) 108,252 NC_003084 8/22/2001
E. postvittana nucleopolyhedrovirus (EppoNPV) 118,584 NC_003083 8/19/2001
H. zea single nucleocapsid nucleopolyhedrovirus
(HzSNPV) 130,869 NC_003349 1/1/2002
O. pseudotsugata multicapsid NPV (OpMNPV) 131,995 NC_001875 3/27/1997
Plutella xylostella granulovirus (PxGV) 100,999 NC_002593 10/29/2000
S. exigua nucleopolyhedrovirus (SeMNPV) 135,611 NC_002169 12/29/1999
Spodoptera litura nucleopolyhedrovirus (SpliNPV) 139,342 NC_003102 9/11/2001
Adoxophyes honmai NPV 113,220 NC_004690 4/5/2003
Adoxophyes orana granulovirus 99,657 NC_005038 7/15/2006
Antheraea pernyi nucleopolyhedrovirus 126,630 NC_008035 5/16/2006
C. fumiferana defective nucleopolyhedrovirus 131,160 NC_005137 10/11/2003
Choristoneura occidentalis granulovirus 104,710 NC_008168 6/19/2006
Chrysodeixis chalcites nucleopolyhedrovirus 149,622 NC_007151 6/29/2005
Cryptophlebia leucotreta granulovirus 110,907 NC_005068 8/13/2003
Helicoverpa armigera nuclear polyhedrosis virus 130,759 NC_003094 8/31/2001
Hyphantria cunea nucleopolyhedrovirus 132,959 NC_007767 2/2/2006
Leucania separata nuclear polyhedrosis virus 168,041 NC_008348 9/16/2006
Neodiprion abietis nucleopolyhedrovirus 84,264 NC_008252 7/24/2006
Neodiprion lecontei NPV 81,755 NC_005906 6/17/2004
Neodiprion sertifer nucleopolyhedrovirus 86,462 NC_005905 6/17/2004
Phthorimaea operculella granulovirus 119,217 NC_004062 7/1/2002
Plutella xylostella multiple nucleopolyhedrovirus 134,417 NC_008349 9/16/2006
Rachiplusia ou multiple nucleopolyhedrovirus 131,526 NC_004323 10/2/2002

74 D. Goodman, N. Ollikainen, and C. Sholley

2.3 Gene Order and Phylogeny

After obtaining the clusters of one-to-one orthologous genes, the order that these
orthologs appear in each genome was determined using the relative starting position
and coding strand of each ORF. The gene ordering for each genome was used as input
into the MGR (Multiple Genome Rearrangement) program, which generated a
phylogenomic tree based on reversal distance [4].

Fig. 1. Diagram of MULGOR and how phylogeny is derived from orthologous clusters

2.4 MULGOR Software

The above procedures were conducted automatically using MULGOR (MULtiple
Genome ORder), a set of perl scripts that takes NCBI genome accession numbers as
input, downloads the sequences, and generates relative gene orders for the common
set of genes from these genomes. MULGOR then feeds these gene orders to MGR to
produce a tree. The software also includes an option to run pairwise comparisons
between genomes and produce 2-dimensional plots of relative gene positions. Genes
on the plot can be represented as lines corresponding to sequence length, or as lines of
equal length. This feature was used as a preliminary method to gauge the relation
between two genomes.

2.5 Using MULGOR Iteratively on Baculovirus

First, all genomes for available members of the Baculovirus family were found, and run
through the script. Because fewer orthologs were shared by all family members as
compared to those shared by individual subgroups, the first pass generated a tree of low
resolution, with many genomes sharing the same gene order. These identically-ordered
subgroups were then automatically run through the script again, generating more
orthologous genes and potentially more rearrangements between them, giving a higher
resolution tree. This process was continued iteratively until further iterations could not
yield refinements of the tree.

 Baculovirus Phylogeny Based on Genome Rearrangements 75

3 Results

3.1 Baculovirus Phylogeny of Nine Species

We first applied our method to derive phylogeny for nine Baculovirus genomes
previously studied by Herniou et al, 2001 [12]. Our software identified 43 genes
common to all nine genomes and constructed the most parsimonious rearrangement
scenario, shown as a phylogenetic tree in Figure 2. This tree clearly shows the

AcMNPV

BmNPV

OpMNPV

LdMNPV

HaSNPV

SeMNPV

CpGV

PxGV

XcGV

group I
NPVs

group II
NPVs

GVs

1

Fig. 2. Rearrangement-based phylogenetic tree of nine Baculovirus genomes, based on 43
orthologous gene clusters. Distances are relative to the number of rearrangement events
between genomes. The distance of one rearrangement is shown in the bottom left of the figure.

AcMNPV

BmNPV

OpMNPV

LdMNPV

HaSNPV

SeMNPV

CpGV

PxGV

XcGV

Fig. 3. Comparison of rearrangement-based phylogenetic tree (left) with a tree based on
analysis of concatenated gene sequences from Herniou et al., 2001 (right)

76 D. Goodman, N. Ollikainen, and C. Sholley

separation of Nucleopolyhedrovirus (NPV) and Granulovirus (GV), as well as the
splitting of NPV into groups I and II. Figure 3 compares our rearrangement-based tree
with a sequence-based tree of the previous study, showing a difference in the
phylogenies of group II NPVs.

3.2 Baculovirus Phylogeny of Twelve Species

Our method was further applied to reconstruct the phylogeny of twelve Baculovirus
genomes examined by Herniou et al., 2003 [13]. The dipteran NPV, CuniNPV, was

AcMNPV

BmNPV

EppoNPV

OpMNPV

SeMNPV

LdMNPV

HaSNPV

HzSNPV

SpliNPV

PxGV

CpGV

XcGV
1

group I
NPVs

group II
NPVs

GVs

Fig. 4. Rearrangement-based phylogenetic tree of twelve Baculovirus genomes, based on 43
orthologous gene clusters

AcMNPV

BmNPV

EppoNPV

OpMNPV

LdMNPV

SeMNPV

HaSNPV

HzSNPV

SpliNPV

CpGV

PxGV

XcGV

Fig. 5. Comparison of rearrangement-based phylogenetic tree (left) with a tree based on
analysis of 30 concatenated gene sequences from Herniou et al., 2003 (right)

 Baculovirus Phylogeny Based on Genome Rearrangements 77

excluded from this analysis due to its significant divergence from the other
lepidopteran Baculoviruses. A most parsimonious rearrangement tree based on 43
genes shared by the twelve Baculovirus genomes is shown in Figure 4. The division of
NPVs and GVs is clear, but the separation of group I and group II NPVs is obscured
by an abundance of rearrangements between group II NPVs. A comparison of this tree
with the corresponding phylogeny derived with a gene-sequence method used by
Herniou, et al, 2003 [13] is shown in Figure 5. While the relationships among group I
NPVs and GVs are identical between both trees, there is disagreement in the resolving
of group II NPVs.

3.3 Updated Phylogeny of Thirty-two Genomes

To provide an update on Baculovirus phylogeny, we incorporated recently sequenced
Baculovirus genomes into our analysis and reconstructed the phylogeny of the
resulting 32 Baculovirus genomes. Once again, non-lepidopteran Baculoviruses were
excluded in order to maintain a significant number of shared genes. The resulting tree,
based on the rearrangements of 35 shared genes, is shown in Figure 6.

Fig. 6. Phylogenetic tree of 32 lepidopteran Baculovirus genomes. The cyan subtree shows the
result of a second iteration necessary to resolve the phylogeny of six group I NPV genomes.

78 D. Goodman, N. Ollikainen, and C. Sholley

Fig. 7. Tree of genome rearrangements for the three different orderings in Granulovirus (top)
and the four different orderings of NPVI (bottom) genomes. When several genomes share the
same order, they are represented by one of their constituent genomes. The total number of
genomes for each gene ordering is shown below each box (see Figure 6). Each icon represents
one ‘strip’ of genes with conserved ordering. Strip direction is relative because each strip
contains genes on both strands. Dotted lines represent ancestries where no rearrangements
occurred.

4 Discussion

A genome-rearrangement method has been used to reconstruct the phylogeny of
Baculovirus genomes, demonstrating the extensive genome rearrangements that have
occurred in Baculovirus evolution. This method generated phylogenies that showed
the separation of Baculoviridae into NPVs and GVs, as well as the separation of
NPVs into groups I and II. While the relationships among species of GVs and group I
NPVs matched those in previous studies [12], [13], differences occurred when
resolving group II NPVs. These differences are illustrated most evidently in Figures
4 and 5, where the gene orders of two group II NPVs, SeMNPV and LdMNPV, are
shown requiring fewer rearrangements to be transformed into a group I NPV gene
order than into another group II NPV gene order.

 Baculovirus Phylogeny Based on Genome Rearrangements 79

4.1 Gene Deletions and Low Sequence Homology

One explanation for the placement of SeMNPV and LdMNPV in Figures 4 and 5 is
that the gene orders used did not contain the entire set of genes shared between all
Baculoviruses in the tree. The gene orders used consisted of 43 shared genes
determined by our software, yet Herniou et. al. 2001, showed the presence of 63
genes shared between these genomes.

The genes that were not identified as shared genes fall into two categories. The
first category consists of genes whose similarity to orthologous genes did not exceed
our similarity threshold. The second consists of ortholog sets that were missing genes
from one or more genomes. In the second case, it is often difficult to tell the if the
missing genes were the result of low sequence homology or were simply deleted in
those genomes. The larger number of shared genes found in Herniou et. al. 2001 was
the result of mining sequence annotations in the literature, which allowed for the
identification of distant orthologs that our method currently ignores.

4.2 Deviations from Parsimony

The differences between rearrangement-based and sequence-based trees shown in
Figures 3 and 5 could suggest that the most parsimonious rearrangement scenario
does not mirror the actual evolutionary events that occurred in Baculovirus evolution.
The most parsimonious scenario minimizes the number of rearrangements and is
typically assumed to be valid due to low probability of a rearrangement occurring.
However, group II NPVs in particular show marked rearrangement, and a scenario
with additional rearrangements that results in an altered tree topology is plausible. For
instance, in Figure 2, HaSNPV is eight rearrangements from both SeMNPV and
LdMNPV, and the most parsimonious scenario shows that HaSNPV and LdMNPV
diverged from a common ancestor not shared by SeMNPV. Another scenario with
equal or slightly more rearrangements could result in HaSNPV and SeMNPV with a
common ancestor not shared by LdMNPV. If MGR were altered to allow for the
output of multiple trees that are very close to the most parsimonious, it might
facilitate the comparison of sequence- and gene-order based trees to derive the most
likely evolutionary scenario.

4.3 Strong Gene Order Conservation vs. Lack of Shared Genes

While a large number of genome rearrangements was identified in group II NPVs,
strong gene order conservation was observed among group I NPVs as well as GVs, as
seen in Figure 7. Because of the large number of gene ‘strips’ resulting from the many
rearrangements in NPV II, we could not display the rearrangements for this subgroup.
The high gene order conservation posed a problem when constructing the 32
Baculovirus genome tree, as some phylogenic relationships could not be determined.
Five group I NPVs, including AcMNPV and BmNPV, maintained identical gene
orders even when 112 shared genes were considered. Another iteration of the
algorithm was performed to separate the group, and is shown in cyan in Figure 6. This
was successful to some degree, but three genomes still remained with identical order.
This also occurred with the group of five GVs containing CpGV, each having
identical orders of 82 shared genes. Such extensive conservation of gene order

80 D. Goodman, N. Ollikainen, and C. Sholley

demonstrates a limitation with rearrangement-based approaches. However, these
situations can be overcome by applying gene sequence and gene content methods to
groups of genomes with highly conserved order. Tracking deletions and horizontal
gene transfers as separate events in genome evolution, alongside rearrangements,
might also yield results here.

Just as conservation presents a problem to rearrangement-based methods, lack of
conservation also creates challenges. For a gene to be considered in the gene order, it
must be present in all genomes being considered. Highly divergent species or species
with rapid gene loss cannot be used unless they possess a significant sized core set of
genes shared with the other genomes. Non-lepidopteran Baculoviruses were excluded
from this study because they greatly reduced the number of shared genes and thus
generated low-resolution error-prone phylogenetic trees. Lepidopteran Baculoviruses,
however, are similar enough to provide a sufficient number of common genes while
being distant enough to trace their evolutionary history through genome
rearrangement. Analysis of small genomes with a genome rearrangement-based
approach requires a well-balanced compromise between similarity and divergence.

4.5 Improvements and Future Work

To increase the number of identified orthologs, an improved method would use a
similarity threshold that varies for each cluster, allowing for distantly related
orthologs to be clustered together. In the case of SeMNPV and LdMNPV, these
additional genes could have an order similar to other group II NPVs, resulting in a
tree identical to the one obtained by Herniou et al. 2004 via gene-sequence methods.

Instead of a top-down multiple iteration approach, a different approach might also
be employed. This method would consider smaller sets of genomes that are known to
share many conserved genes instead of the set of all genomes, which shares fewer
orthologous sets. These smaller triplet phylogenies could then be merged using the
gene orders of the triplet ancestor. This bottom-up method might bypass the main
difficulty seen here: a lack of gene conservation among disparate genomes.

4.6 Conclusion

While our results are largely consistent with Herniou et. al., there are some important
differences, as outlined above. It is not uncommon to have conflicting and
controversial scenarios for many questions in evolution, let alone viral evolution. The
phylogenies presented in Herniou et. al., 2001, 2003, 2004 also point to self-
conflicting evolutionary relationships in some cases. Further, because the phylogenies
presented have no bootstrap values or confidence scores, it is difficult to objectively
assess their relative accuracy. Aside from the difficulties, our method presents an
automated tool that can be used alongside existing gene-content-based methods of
phylogeny derivation.

Acknowledgements. The authors would like to thank Dr. Pavel Pevzner for his
helpful advice and constructive discussions and the reviewers for their thoughtful and
useful comments and suggestions. The work was supported by the Howard Hughes
Medical Institute Professor Award.

 Baculovirus Phylogeny Based on Genome Rearrangements 81

References

1. Albrecht, J., Nicholas, J., Biller, D., Cameron, K.R., Biesinger, B., Newman, C.,
Wittmann, S., Craxton, M.A., Coleman, H., Fleckenstein, B., Honess, R.W.: Primary
structure of the herpesvirus saimiri genome. J. Virol. 66, 5047–5058 (1992)

2. Belda, E., Moya, A., Silva, F.: Genome Rearrangement Distances and Gene Order
Phylogeny in γ-Proteobacteria. Molecular Biology and Evolution. 22, 1456–1467 (2005)

3. Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. In: Miyano, S., Takagi,
T. (eds.) Genome Informatics 1997, pp. 25–34. Univ. Academy Press (1997)

4. Bourque, G., Pevzner, P.: Genome-Scale Evolution: Reconstructing Gene Orders in the
Ancestral Species. Genome Research. 12(1), 26–36 (2002)

5. Bourque, G., Pevzner, P.A., Tesler, G.: Reconstructing the genomic architecture of
ancestral mammals: lessons from human, mouse, and rat genomes. Genome Research. 14,
507–516 (2004)

6. Bryant, D.: The complexity of calculating exemplar distances. In: Sankoff, D., Nadeau, J.
(eds.) Comparative Genomics, pp. 207–212. Kluwer Academic Publishers, Dordrecht
(2000)

7. Cormen, T.H., Leiserson, C.E., Riverst, R.L, Stein, C.: Introduction to Algorithms. Mc-
Graw Hill, New York (2001)

8. El-Mabrouk, N.: Genome rearrangement by reversals and insertions/deletions of
contiguous segments. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848,
pp. 222–234. Springer, Heidelberg (2000)

9. Hannenhalli, S., Pevzner, P.: Transforming cabbage into turnip (polynomial algorithm for
sorting signed permutations by reversals). In: Theory of Computing STOC 95, pp. 178–
189. ACM Press, New York (1995)

10. Hannenhalli, S., Chappey, C., Koonin, E., Pevzner, P.: Genome Sequence Comparison and
Scenarios for Gene Rearrangements: A Test Case. Genomics. 30, 299–311 (1995)

11. Hanson, L., Rudis, M., Vasquez-Lee, M., Montgomery, D.: A broadly applicable method
to characterize large DNA viruses and adenoviruses based on the DNA polymerase gene.
Virology Journal 3, 28 (2006)

12. Herniou, E., Luque, T., Chen, X., Vlak, J., Winstanley, D., Cory, D., O’Reilly, D.: Use of
Whole Genome Sequence Data To Infer Baculovirus Phylogeny. Journal of
Virology 75(17), 8117–8126 (2001)

13. Herniou, E., lszewski, O., Cory, J., O’Reilly, D.: The Genome Sequence and Evolution of
Baculoviruses. Annual Review of Entomology 48, 211–234 (2003)

14. Herniou, E., Olszewski, J., O’Reilly, D., Cory, J.: Ancient Coevolution of Baculoviruses
and Their Insect Hosts. Journal of Virology. 78(7), 3244–3251 (2004)

15. Graur, D., Li, W.: Fundamentals of Molecular Evolution. In: Sinauer Associates,
Sunderland, Massachusetts (2000)

16. Koonin, E.V., Aravind, L., Kondrashov, A.S.: The impact of comparative genomics on our
understanding of evolution. Cell 101(6), 573–576 (2000)

17. Li, L., Stoeckert, C.J., Roos, D.S.: OrthoMCL: Identification of Ortholog Groups for
Eukaryotic Genomes. Genome Res. 13(9), 2178–2189 (2003)

18. Moret, B.M.E., Siepel, A.C., Tang, J., Liu, T.: Inversion medians outperform breakpoint
medians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D.
(eds.) WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002)

82 D. Goodman, N. Ollikainen, and C. Sholley

19. Murphy, W.J., Larkin, D.M., van der Wind, A.E., Bourque, G., Tesler, G., Auvil, L.,
Beever, J.E., Chowdhary, B.P., Galibert, F., Gatzke, L., Hitte, C., Meyers, S.N., Milan, D.,
Ostrander, E.A., Pape, G., Parker, H.G., Raudsepp, T., Rogatcheva, M.B., Schook, L.B.,
Skow, L.C., Welge, M., Womack, J.E., O’brien, S.J., Pevzner, P.A., Lewin, H.A.:
Dynamics of mammalian chromosome evolution inferred from multispecies comparative
maps. Science 309(5734), 613–617 (2005)

20. Murphy, W., Pevzner, P., O’Brien, S.: Mammalian phylogenomics comes of age. Trends
in Genetics. 20(12), 631–639 (2004)

21. Olmstead, R., Palmer, J.: Chloroplast DNA systematics: a review of methods and data
analysis. Amer. J. Bot. 81, 1205–1224 (1994)

22. Palmer, J., Herbon, L.: Plant mitochondrial DNA evolves rapidly in structure, but slowly
in sequence. J. Mol. Evol. 27, 87–97 (1988)

23. Remm, D., Storm, C.E.V., Sonnhammer, E.L.L.: Automatic Clustering of Orthologs and
In-paralogs from Pairwise Species Comparisons. J. Mol. Biol. 314, 1041–1052

24. Rokas, A., Holland, P.W.H.: Rare genomic changes as a tool for phylogenetics. Trends in
Ecology & Evolution 15(11), 454–459 (2000)

25. Sankoff, D.: Genome rearrangement with gene families. Technical Report, Centre de
recherches mathématiques, Université de Montréal (1999)

26. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny.
Journal of Computational Biology 5, 555–570 (1998)

27. Snel, B., Bork, P., Huynen, M.: Genome phylogeny based on gene content. Nature
Genetics. 21, 108–110 (1999)

28. Snel, B., Bork, P., Huynen, M.: Genomes in Flux: The Evolution of Archaeal and
Proteobacterial Gene Content. Nature. 417, 399–403 (2002)

29. Tesler, G., Pavel, P.: Genome Rearrangements in Mammalian Evolution: Lessons From
Human and Mouse Genomes. Genome Res. 13, 37–45 (2003)

30. Thornton, J.W., DeSalle, R.: Gene family evolution and homology: genomics meets
phylogenetics. Annu. Rev. Genomics Hum. Genet. 1, 41–73 (2000)

31. Wang, L., Warnow, T.: Estimating true evolutionary distances between genomes. In:
Proceedings of the Thirty-third Symposium on Theory of Computing (STOC’01), pp.
637–646. ACM Press, New York (2001)

Learning Gene Regulatory Networks

via Globally Regularized Risk Minimization

Yuhong Guo and Dale Schuurmans

Department of Computing Science,
University of Alberta, Edmonton T6G 2E8, Canada

{yuhong,dale}@cs.ualberta.ca

Abstract. Learning the structure of a gene regulatory network from time-
series gene expression data is a significant challenge. Most approaches pro-
posed in the literature to date attempt to predict the regulators of each
target gene individually, but fail to share regulatory information between
related genes. In this paper, we propose a newglobally regularized risk min-
imization approach to address this problem. Our approach first clusters
genesaccording to their time-series expressionprofiles—identifying related
groups of genes. Given a clustering, we then develop a simple technique
that exploits the assumption that genes with similar expression patterns
are likely to be co-regulated by encouraging the genes in the same group to
share common regulators.Our experiments on both synthetic and real gene
expression data suggest that our newapproach is more effective at identify-
ing important transcription factor based regulatory mechanisms than the
standard independent approach and a prototype based approach.

1 Introduction

Genes and their products do not work independently in the cell. Rather, they
are jointly regulated in a coordinated fashion, both internally and externally, to
achieve proper cell function. One of the key mechanisms of gene regulation takes
place at the mRNA transcription level. With the emergence of high-throughput
microarray techniques, the mRNA expression levels of thousands of genes can be
measured simultaneously. Using computational techniques to learn gene regula-
tory networks from high-throughput time-series gene expression data has been
an active area of research in recent years. The goal of such research is to discover
the causal control relationships between genes, which would offer a fundamental
understanding of how biological processes are coordinated in the cell.

A variety of computational approaches have been proposed in the literature
to model gene regulatory networks from expression data. Many approaches have
been based on the use of linear models to express dependence between time
series profiles. For example, D’Haeseleer et al. [1] studied a straightforward lin-
ear model for this purpose; Chen et al. [2] and De Jong et al. [3] investigated
linear differential equations for gene regulatory network modeling. All of these
approaches suffer from risks of over-fitting, however, since they fit a number of
parameters that is proportional to the size of the data itself. To counter the risk

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 83–95, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

84 Y. Guo and D. Schuurmans

of over-fitting, other linear approaches have taken advantage of sparseness of the
regulatory relationship between genes; that is, that any one gene is regulated
by a small subset of the other genes. De Hoon et al. [4] have proposed to use
“Akaike’s Information Criterion” (AIC) to determine the nonzero coefficients in
the linear system. Similarly, Li & Yang [5] used “L1 regularization” to conduct
feature selection on the linear parent set.

Another popular approach to learning gene regulatory network structure is to
exploit various forms of (dynamic) Bayesian network structure learning meth-
ods. A Bayesian network is a graphical representation of the causal relationships
underlying a set of variables that provides a sound probabilistic framework for
representing and inferring probabilistic relationships. Dynamic Bayesian net-
works are a natural extension of Bayesian networks to modeling time-series
data. Learning the structure of a Bayesian network from data generally re-
quires one of two approaches to be followed: a score-based approach—where
a heuristic search is performed through the space of causal network structures
to identify the most likely structure explaining the data—and a constraint-based
approach—where conditional independence tests are used to determine whether
a direct causal relationship should be postulated between two variables. Many
variants of these techniques have been applied to gene regulatory network learn-
ing, including search-based approaches [6,7,8], information-theoretic approaches
[9], parameter-tying based approaches [10], and conventional dynamic Bayesian
network learning approaches [11,12].

Although these previous techniques have achieved some promising results,
the fundamental limitation of the amount of data available relative to the large
number of parameters estimated (e.g. distinct parameters used to predict the ex-
pression level of each gene given other genes) severely constrains their effective-
ness. This difficulty is inherent to the task: orders of magnitude more expression
data would be required for naive estimation approaches devoid of background
knowledge and biologically relevant assumptions to succeed on this problem.

One common shortcoming in the current literature, whether using linear mod-
eling or using Bayesian network structure learning, is that nearly all proposed
approaches attempt to determine the regulation structure for each target gene
independently. Yet it is well known that genes that share the same expression
pattern are likely to be involved in the same regulatory process, and therefore
share the same (or at least a similar) set of regulators [13]. The main ques-
tion we investigate is how to exploit biologically significant knowledge about
co-regulation to improve the inference of the underlying gene regulatory net-
work from expression data. Although a few previous investigators, such as van
Someren et al. (2000), have proposed to group genes with similar expression
profiles in a single prototypical “gene”, and then model the relations between
prototypical genes instead of modeling the genes individually, this is a some-
what oversimplified approach that ultimately ignores the individual differences
between genes in the same group, and puts a particular high requirement on the
clustering step.

Learning Gene Regulatory Networks 85

In this paper, we propose a novel approach for predicting the regulators for
a given group of genes with similar mRNA expression patterns, by minimizing
a globally shared regularized prediction risk that encourages similar genes to
share regulators. The models we learn, however, are otherwise standard linear
models. The novelty of the approach is to first cluster the genes based on their
time series expression profiles, and then minimize a loss determined on a set of
global indicator variables associated with the common set of possible regulatory
variables. We evaluate the performance of our approach on both synthetic data
and the cell cycle time-series gene expression data of [14]. Our synthetic results
show that our approach is able to learn the correct structure far more effec-
tively than the typical approach that does not take into account co-regulation
knowledge. Our results on the Cho et al. (1998) cell cycle data suggests our
approach can identify the important transcription factors in the cell cycle genes
more accurately by exploiting the co-regulation knowledge.

2 Method

The core of our method is based on using linear regression models to infer the
expression level of each target gene from the expression levels of a set of poten-
tial regulator genes. However, even though linear prediction provides a simple
and elegant foundation for modeling time series expression data, it cannot be
applied naively. At least three significant issues need to be addressed before rea-
sonable results can be achieved. First, time lags exist in the regulatory pathways
controlling gene expression. These time lags vary between pathways and remain
generally unknown a priori [12]. Second, the number of parameters required by
a simple linear model (one parameter for each target-regulator combination) is
far too many to be estimated reliably from available time series gene expression
data. Some sort of effective feature selection mechanism must be employed [5].
Third, genes that serve related or synchronized functions tend to share common
regulatory mechanisms. That is, related genes tend to share common regulators,
and this knowledge must be exploited somehow to improve the quality of the
regulation networks that are inferred. Failure to take into account any of these
issues causes the linear prediction (or any other) approach to perform poorly.

We take into account all three of the above issues and modify the linear predic-
tion approach to infer gene regulatory networks from time series expression data.
The first two issues have been handled in varying ways in existing research—
although we propose particularly simple and elegant ways to handle them in this
paper. The third issue comprises the main observation we make, and motivates
our use of a novel form of global risk minimization that is able to share regula-
tory information between similar genes while simultaneously allowing individual
differences.

2.1 Linear Modeling

First, to establish the basic linear prediction approach consider an n × t matrix
Y of time series gene expression data, where each column corresponds to the

86 Y. Guo and D. Schuurmans

expression levels of a single gene measured over a series of n time points; hence, Y
stores the expression profiles for t genes. For each gene, we would like to identify
which other genes measured in Y are likely to be regulators. The fundamental
hypothesis is that the expression levels of a regulator gene should be predictive
of the expression levels for a regulated target gene, possibly subject to time lag
and the presence of co-regulators or absence of inhibitors.1

A straightforward linear prediction approach proceeds as follows. Assume for
a target expression profile yj given by an n × 1 column vector from Y , we have
a set of candidate regulator profiles stored in an n × k matrix Xj consisting of
k distinct columns selected from Y . (We will discuss below how such a set of
candidate profiles might be inferred for a given target yj .) The quality of this
set of candidate regulators can be assessed by how well their expression levels
predict the expression levels of the target, which can be determined by solving
for the combination weights of the regulator profiles that best reconstruct the
target profile

min
wj

‖Xjwj − yj‖2
2. (1)

Here the k × 1 vector of combination weights wj describes how the expression
levels of the regulator genes in Xj interact to best explain the target expression
levels yj , and the quality of the fit can be assessed by the residual error in (1).

2.2 Coping with Time Lags via Time Shifting

Unfortunately, the naive linear modeling approach (1) suffers from the three
major drawbacks mentioned above. The first problem is that it does not account
for any time lag between the expression of a regulating gene and the expression
of its downstream target. In fact, the naive approach (1) implicitly assumes
that regulation occurs instantaneously, and therefore performs quite poorly at
identifying any regulatory relationship that exhibits delayed effects. To cope
with this shortcoming, we modify the approach to first take into account any
potential time lag between the expression of a regulator and its downstream
target. In particular, for each candidate regulator measured in Xj, given by an
n × 1 vector xij , we first compute an optimal shift back in time that best aligns
xij individually with the target yj

s∗ij = arg min
s∈{0,1,2,3}

‖xij(1, ..., n − s) − yj(s + 1, ..., n)‖2
2. (2)

(Note that the shifts only allow time lags forward in time from the expression of
the regulator to the expression of the target.) Repeating this for each candidate
regulator profile in Xj , yields a series of optimal time lags. We can then refor-
mulate the expression matrix Xj for the candidate regulators by applying the

1 To mitigate the effect of measurement errors and outliers in the expression data, we
generally assume the columns of Y have been rescaled to values between 0 and 1,
and thus we are only searching for explanations of relative increases or decreases in
expression level.

Learning Gene Regulatory Networks 87

optimal shift to each column, and truncating the columns to a common length
based on the maximum shift, obtaining an (n−smax)×k time-lag aligned matrix
Φj . The target expression profile yj is then also truncated to a corresponding
(n−smax)×1 vector ỹj , where ỹj = yj(smax, ..., n). The quality of the candidate
regulators can then be assessed by the more appropriate aligned reconstruction

min
wj

‖Φjwj − ỹj‖2
2. (3)

2.3 Feature Selection via L1 Regularized Risk Minimization

Although the modified linear approach (3) appropriately handles time lags be-
tween regulator and target expression patterns, it still suffers from a major
drawback: the set of candidate regulators for a given gene is usually very large
(e.g. the complete set of remaining genes), while the number of time points sam-
pled in a time series experiment is usually quite small (on the order of 20 to
30). Therefore a large set of combination weights wj need to be inferred from a
limited amount of data. Moreover, only a tiny fraction of the candidate regula-
tors are expected to be true regulators for any given gene, meaning that, ideally,
most of the weights should be set to 0 to indicate non-regulation. The bottom
line is that some sort of effective form of feature selection is required for this
problem. From a large set of candidate regulator expression profiles, most need
to be discarded, and a small number retained to provide a good explanation of
the target expression profile.

It is well known in the machine learning literature [15] that using the L1
norm (rather than the more conventional L2 norm) for regularization is very
effective for feature selection. In this approach, one adds a penalty to the risk
(the reconstruction objective) which encourages small values for wj :

min
wj

‖Φjwj − ỹj‖2
2 + α‖wj‖1, (4)

where α is a parameter that trades off the influence of the risk with the reg-
ularizer. Crucially, this regularizer encourages many of the weights to become
exactly zero in the solution. To see why, note that the regularization term is
non-differentiable at zero, but any movement of a weight from zero immediately
creates a derivative of magnitude α encouraging movement back to zero. Thus, if
the magnitude of the derivative of the risk is not greater than α, then the weight
will remain at zero. These intuitions lead to an efficient optimization procedure
known as grafting [16].

2.4 Regulation Sharing via Globally Regularized Risk Minimization

Simply solving the minimization problem in (4) provides no advantage over the
approaches proposed in the literature however, since it does not address the
problem of facing a shortage of data while trying to make inferences about a
large number of genes. To mitigate this problem we propose to share regulatory

88 Y. Guo and D. Schuurmans

information across sets of target genes. Given the hypothesis that genes with
similar expression patterns are usually co-regulated and involved in the same
functional process, we propose to first cluster the target genes based on their
expression patterns. (This clustering can be performed in many different ways. In
our implementation below we simply used a straightforward K-means method.)
Then, for each cluster, our goal is to identify a set of regulators that is shared
among the entire set of genes in the cluster, while still allowing for differences
among the regulation of individual genes. Achieving this type of information
sharing in the context of regularized linear modeling (4) however, requires some
novel technical developments.

In [17] we recently developed a novel convex Bayesian network structure learn-
ing approach based on introducing a set of auxiliary indicator variables to control
global feature selection. Adapting this idea to the current context, we propose
to use a global regularization scheme on auxiliary selection variables to help
identify the common candidate regulators among a group of target genes with
similar expression profiles. Given that there is much more data available for
sets of similar genes, as opposed to individual genes, we hope that the common
regulators can be more accurately identified.

Specifically, given a set of target genes Y = {y1, ...,ym}, we would like to
identify a common set of regulators from the set of candidates X = {x1, ...,xl}.
Define a set of indicator variables η = {η1, ..., ηl}�, corresponding to the candi-
date set X = {x1, ...,xl}, such that each ηi ∈ {0, 1} indicates whether a regula-
tor Xi is selected as an active regulator. Let N = diag(η). Then, we can form
a globally regularized version of the minimization problem (4) by introducing
the selection variables η and adding a new global regularization term on these
variables:

min
η∈{0,1}n

min
w

∑
j

(
‖ΦNwj − ỹj‖2

2 + α‖wj‖1

)
+ λu�η, (5)

where u is a positive weight vector that allows one to incorporate prior knowl-
edge about the importance of each global feature. Although we simply set this
vector to 1 in our later experiments, it will be very useful whenever prior knowl-
edge is available. Note that the global regularization term λu�η is in fact an
L0 norm regularizer, which will automatically force a sparse solution that se-
lects only a small set of global features for the set of target genes in a cluster.
Nevertheless, the local L1 norm regularizer, α‖wj‖1, will still make individual
choices of regulators for each specific target gene; choosing these regulators from
the globally selected features identified by η. Therefore, if the target genes in a
cluster share some common regulators, the global feature selection process will
be very helpful to pick them out, while the ability to individually model the
regulation of each gene has not been diminished.

2.5 Optimization Procedure

Equation (5) encodes a min-min integer optimization problem. Unfortunately,
integer optimization problems of this form are generally NP-hard. To attempt to

Learning Gene Regulatory Networks 89

solve the problem efficiently, we first relax it into an optimization over continuous
variables, by relaxing each ηi ∈ {0, 1} to be continuous ηi ∈ [0, 1]. This leads to
solve the following relaxed min-min optimization:

min
η

min
w

∑
j

(
‖ΦNwj − ỹj‖2

2 + α‖wj‖1

)
+ λu�η

s.t. 0 ≤ η ≤ 1. (6)

In fact, this formulation has relaxed the original L0 norm regularizer over η into
a L1 norm regularizer. In this way we maintain feature selection ability, while
gaining computational efficiency.

In our implementation below, we conduct the optimization in two alternating
steps: minw and minη. Each minw step is simply a minimization of least squares
regression error with L1 norm regularization, which can be implemented as a
quadratic program [18], or by using a fast grafting algorithm [16]. For the minη

step, we use a quasi-Newton BFGS method to perform the optimization [19].

3 Experiments and Results

We conducted experiments on both synthetic and real cell cycle data to evalu-
ate our approach. In particular, we compared our global regularization approach
to the standard independent local predication approach, and a prototype based
linear regression method adapted from [20]. Synthetic experiments are useful
to gauge the potential effectiveness of the approach under controlled conditions
where the ground truth is available. Once the intuitive behavior of the tech-
nique is understood, we then apply the method to inferring the structure of the
regulatory network of the yeast cell cycle.

In our experiments, we assume all transcription regulations work through
activators, instead of inhibitors; that is, we assume the w parameters are non-
negative in the linear regressions. Also, to keep the w parameters from becoming
too small and causing a threshold selection problem, we included the additional
constraint ‖wj‖1 ≥ 1 in the three linear regression algorithms.

3.1 Experiments on Synthetic Data

For the synthetic experiments, we set up a small system to simulate a cell cycle
process controlled by a small number of critical transcription factors (TFs). We
defined 10 TFs that regulated the expression levels of 212 genes in 4 phases of
a synthetic cell cycle. These 10 TFs were divided into 4 regulatory groups, with
3, 2, 3, and 2 TFs in each group respectively. Each group of TFs was associated
with a specific phase of the cell cycle, and regulated the expression of 53 genes,
as well as the TFs in the next phase of the cycle. In our setting, we assumed that
one gene (including the TFs themselves) can be regulated by either one TF or
a combination of two TFs. We generated the expression data by first simulating
ideal expression levels for the TFs in a selected phase for two complete cell

90 Y. Guo and D. Schuurmans

cycles, totaling 16 time steps. Then we generated the expression profiles of the
genes (or TFs) in the next phase by a 2 time step delayed response from the
combination (“and”) of m (m ≤ 2) randomly selected TFs in their previous
phase, plus Gaussian noise. Repeating this procedure for all the phases in the
cycle in turn, we generated synthetic time-series profiles for the entire set of TFs
and genes.

Both our global regularization approach and the prototype based method re-
quire the genes to first be clustered based on their expression profiles. Although
the number of clusters used has a minor effect on the performance of both al-
gorithms, the impact is not significant provided that the cluster number is not
extreme (neither extremely big nor extremely small). For our synthetic experi-
ments, we simply choose to use 10 as the number of clusters.

Column 5 in Figure 1 shows the expression profiles for the genes and TFs after
their profiles have been clustered into 10 groups. We then learn the regulators
for the genes in each group, using our globally regularized linear regression to
encourage genes in the same group to share parents. We compared the results
of the global approach to both the standard “local” approach of learning the
parent regulators for each gene separately, and the prototype based approach of
forcing all the genes in one group to have the exactly same set of parents. The
comparison algorithms serve as controls at the two opposite extremes. We used
the same L1 regularized method for parent selection in all of the algorithms.
After obtaining the w parameters from each algorithm, all the parents indicated
by w > 10−5 are determined as predicted regulators for the corresponding genes.
For a fair comparison, the regularization parameters (α and λ) were chosen to
yield the highest F-measure values in each case.

Columns 1–3 in Figure 1 show the regulator prediction results for the three
algorithms respectively; comparing them with the true regulation information
in Column 4. The x-axis for each column indicates the candidate TFs from
which a subset is selected as the set of regulators for each gene. The y-axis for
each column indexes the individual target genes. Each row plots the predicted
regulators for each gene based on the corresponding w parameters for that gene,
where white indicates a large value (indicating a regulator), while dark indicates
a value close to 0 (indicating no regulation).

The table in Figure 1 compares the performance of the three algorithms. The
precision score measures true positive predictions (tp) divided by true positives
plus false positive predictions (fp). That is, precision = tp/(tp+fp). Similarly, re-
call score is measured in terms of the number of false negative predictions (fn),
and is given by recall = tp/(tp + fn). F-measure is a standard combination of
both precision (p) and recall (r), given by F-measure = 2 p r/(p + r). The accu-
racy score measures the proportion of the correct predictions. That is, accuracy
= (tp + tn)/(tp + tn + fp + fn). Here we can see that the global regulariza-
tion approach greatly outperforms both the local regularization and prototype
based methods with respect to both accuracy and F-measure. The local predica-
tion method is not able to effectively identify the true regulators due to the noise
in the data and the limited number of time points. The prototype base method

Learning Gene Regulatory Networks 91

Local Predict

TF Index

G
e

n
e

 I
n

d
e

x

2 4 6 8 10

20

40

60

80

100

120

140

160

180

200

220

Prototype Predict

TF Index
2 4 6 8 10

20

40

60

80

100

120

140

160

180

200

220

Global Predict

TF Index
2 4 6 8 10

20

40

60

80

100

120

140

160

180

200

220

Known TF Regs

TF Index
2 4 6 8 10

20

40

60

80

100

120

140

160

180

200

220

Expression

Time
5 10 15

20

40

60

80

100

120

140

160

180

200

220

Performance Local Prototype Global
comparison regularization method regularization

accuracy (%) 57.6 47.2 73.0
precision (%) 21.4 18.1 30.0
recall (%) 71.5 75.0 63.8
F-measure 33.0 29.2 40.8

Fig. 1. Results on synthetic data. Rows denote target genes in the synthetic experi-
ment. Columns denote candidate regulators (transcription factors). A white cell denotes
a large weight (wij > 10−5) connecting a TF j to a target gene i in the estimated linear
model, indicating that j is inferred to regulate i. A black cell denotes a small weight
(wij ≤ 10−5), indicating that j is not inferred to regulate i. Column 1: local prediction
output. Column 2: prototype prediction output. Column 3: global prediction output.
Column 4: ground truth regulatory relationships. Column 5: expression level data used
as input.

also has difficulty identifying correct regulatory relationships, and tends to choose
too many parents for each gene. The reason for this is clear however. Since the pro-
totype method is forced to choose a single set of regulators for controlling a large
set of genes, it naturally chooses the union of the prospective regulators for each
gene, leading to subsequently low precision and accuracy. Thus, the prototype
approach depends heavily on having a more refined and accurate set of clusters

92 Y. Guo and D. Schuurmans

from which it can make accurate regulatory inferences, but an accurate clustering
is very hard to achieve in practice. Figure 1 shows, on the other hand, that the
global regularization approach can effectively remove irrelevant candidate TFs by
sharing co-regulation information within a group, while simultaneously reducing
the number of spurious regulators being inferred by allowing individual differ-
ences between genes in a given cluster. The overall result is a much more accurate
(albeit far from perfect) recovery of the underlying regulatory structure.

The main question that remains is whether the higher quality inference on this
synthetic model leads to improved results on real gene expression data, which we
consider next.

3.2 Experiments on Real Data

Gene expression microarray data for the yeast cell cycle typically contains more
than 6000 genes, while only a subset of these genes are cell cycle regulated. It is
known there are 9 important transcription factors (TFs) that regulate the cell cy-
cle process [21], namely: SWI4, SWI6,MPB1,FKH1,FKH2, NDD1,MCM1,ACE2
and SWI5. Since a lot of gene regulatory relationships have already been identified
for yeast, this model is commonly used to evaluate learning approaches that at-
tempt to infer gene regulatory networks from data. Here we use Cho et al.’s data
[14], and focus on the task of identifying the subset of regulators from the 9 can-
didate TFs, for each yeast gene that is cell cycle regulated. To clearly evaluate our
approach, we chose a subset of 267 cell cycle regulated genes from the Cho et al.
data [14], while we could obtain confirmed regulatory relationships from the pre-
vious literature [21,22], or could obtain potential regulation relationships from ex-
isting binding data [21] for 127 genes among them. We rescaled the expression data
to values between 0 and 1, and then clustered the genes into 15 clusters using K-
means. (In the images shown in Figure 2, the genes are grouped vertically into the
clusters. The number of clusters is chosen by using visual judgment to achieve a
smooth clustering effect.) Finally, we tested our algorithms on each cluster. As in
the synthetic experiments, after obtaining the w parameters from each algorithm,
all the parents indicated by w > 10−5 are determined as predicted regulators for
the corresponding genes. For a fair comparison, the regularization parameters (α
and λ) were chosen to yield the highest F-measure values in each case.

Since the regulatory mechanisms are still not known for a portion of the 267
genes, we therefore can only evaluate the results over the 127 genes for which reg-
ulatory relationships are presumed known. Figure 2 shows the prediction results
on 127 genes for all the three algorithms: locally regularized prediction, proto-
type based prediction, and globally regularized prediction. The images compare
the performance of the three methods on inferring regulators from among the 9
candidate TFs, and shows how they related to the known TF-based regulatory
relationships. These results show that the globally regularized approach can sig-
nificantly improve the quality of both the standard locally regularized approach
and the prototype based approach adapted from [20]. As in the synthetic case,
the globally regularized approach has the ability to share regulatory informa-
tion between genes within a cluster, leading to better noise robustness than the

Learning Gene Regulatory Networks 93

Local Predict

TF Index

G
e

n
e

 I
n

d
e

x

2 4 6 8

20

40

60

80

100

120

Prototype Predict

TF Index
2 4 6 8

20

40

60

80

100

120

Global Predict

TF Index
2 4 6 8

20

40

60

80

100

120

Known TF Regs

TF Index
2 4 6 8

20

40

60

80

100

120

Expression

Time
5 10 15

20

40

60

80

100

120

Performance Local Prototype Global
comparison regularization method regularization

accuracy (%) 57.8 55.4 73.9
precision (%) 22.3 21.2 35.7
recall (%) 47.5 48.0 43.4
F-measure 30.4 29.4 39.2

Fig. 2. Results on the subset of the real gene expression data from [14], restricted to
genes where TF-based regulation information is known or can be inferred from other
sources [21,22]. Rows denote target genes in the synthetic experiment. Columns de-
note candidate regulators (transcription factors). A white cell denotes a large weight
(wij > 10−5) connecting a TF j to a target gene i in the estimated linear model, indi-
cating that j is inferred to regulate i. A black cell denotes a small weight (wij ≤ 10−5),
indicating that j is not inferred to regulate i. Column 1: local prediction output. Col-
umn 2: prototype prediction output. Column 3: global prediction output. Column 4:
ground truth regulatory relationships. Column 5: expression level data used as input.

local approach. Here too, the global technique also overcomes the problem of be-
ing overly dependent on clustering quality, like the prototype approach, by allow-
ing regulation differences with a cluster. For example, in Figure 2, in the group
of genes indexed between 42-58, one can see that a large set of the errors pro-
duced by the standard independent approach (Column 1) have been corrected by

94 Y. Guo and D. Schuurmans

sharing parent information throughout the cluster (Column 3). The global regu-
larizer correctly recognizes that this set of late-G1 genes is regulated by a subset
of SWI4/SWI6 and MBP1/SWI6. Although some local errors remain in this re-
gion (and elsewhere), clearly the overall quality of the parent prediction has been
improved substantially in the global method. For these genes, the prototype based
method (Column 2) recognizes two additional parents, perhaps due to noise.

Overall, the prediction quality achieved by these methods on this data is still
somewhat limited, but has improved significantly over the past few years, and
in some sense is remarkable given the noise exhibited in the expression profiles
(Column 5).

4 Conclusions

In this paper, we have proposed a new globally regularized risk minimization ob-
jective for learning regulatory networks from gene expression data. Exploiting
the assumption that genes with similar expression patterns are likely to be co-
regulated, our approach first clusters the genes, and then learns the regulatory re-
lationships by encouraging genes with similar expression patterns to share regula-
tors. Our experimental results on both synthetic data and real cell cycle data show
that this new approach is more effective at identifying important (transcription
factor based) regulatory mechanisms than the standard independent approach,
and a prototype based approach.

Thus far, we have only considered using gene expression data in the learning
process. Further prediction improvements are likely to come from incorporating
further sources of biologically relevant data, such as binding information [21], or
other forms of prior knowledge beyond the co-regulation assumption made here.
These informations can be nicely incorporated into our global risk minimization
approach by using the u parameter vector. Moreover, as an effective feature selec-
tion strategy, it might be useful to extend this approach resolving other feature
selection bioinformatics problems.

Acknowledgments

Research supported by NSERC, MITACS, CFI, the Alberta Ingenuity Centre
for Machine Learning, and the Canada Research Chair program. We thank the
anonymous referees for their helpful comments.

References

1. D’Haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Linear modeling of mrna ex-
pression levels during cns development and injury. Pac. Symp. Biocomput., 41–52
(1999)

2. Chen, K.C., Wang, T.Y., Tseng, H.H., Huang, C.Y.F., Kao, C.Y.: A stochastic dif-
ferential equation model for quantifying transcriptional regulatory network in sac-
charomyces cerevisiae. Bioinformatics 21, 2883–2890 (2005)

Learning Gene Regulatory Networks 95

3. De Jong, H., Gouze, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Quali-
tative simulation of genetic regulatory networks using piecewise-linear models. Bull.
Math. Biol. 66, 301–340 (2004)

4. De Hoon, M., Imoto, S., Kobayashi, K., Ogasawara, N., Miyano, S.: Inferring gene
regulatory networks from time-ordered gene expression data of bacillussubtilis us-
ing differential equations. Pac. Symp. Biocomput., 17–28 (2003)

5. Li, F., Yang, Y.: Recovering genetic regulatory networks from micro-array data and
location analysis data. Genome Informatics 15, 131–140 (2004)

6. Hartemink, A., Gifford, D., Jaakkola, T., Young, R.: Using graphical models and
genomic expression data to statistically validate models of genetic regulatory net-
works. Pac. Symp. Biocomput., 422–433 (2001)

7. Yu, J., Smith, V., Wang, P., Hartemink, A., Jarvis, E.: Advances to Bayesian net-
work inference for generating casual networks from observational biological data.
Bioinformatics 20, 3594–3603 (2004)

8. Wang, S.: Reconstructing genetic networks from time ordered gene expression data
using Bayesian method with global search algorithm. J. Bioinform. Comput. Biol. 2,
441–458 (2004)

9. Chen, X., Anantha, G., Wang, X.: An effective structure learning method for con-
structing gene networks. Bioinformatics 22, 1367–1374 (2006)

10. Segal, E., Pe’er, D., Regev, A., Koller, D., Friedman, N.: Learning module networks.
J. Mach. Learn. Res. 6, 557–588 (2005)

11. Bernard, A., Hartemink, A.: Informative structure priors: joint learning of dynamic
regulatory networks from multiple types of data. Pac. Symp. Biocomput., 459–470
(2005)

12. Zou, M., Conzen, S.: A new dynamic Bayesian network (DBN) approach for iden-
tifying gene regulatory networks from time course microarray data. Bioinformat-
ics 21, 71–79 (2005)

13. D’Haeseleer, P., Wen, X., Fuhrman, S., Somogyi, R.: Genetic network inference: from
co-expression clustering to reverse engineering. Bioinformatics 16, 707–726 (2000)

14. Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka,
L., Wolfsberg, T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., Davis, R.W.:
A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell. 2, 65–73
(1998)

15. Ng, A.: Feature selection, L1 vs L2 regularization, and rotational invariance. In:
International Conf. on Mach. Learn (ICML) (2004)

16. Simon, P., Kevin, L., James, T.: Grafting: Fast, incremental feature selection by
gradient descent in function space. J. Mach. Learn. Res. 3, 1333–1356 (2003)

17. Guo, Y., Schuurmans, D.: Convex structure learning for Bayesian networks: Polyno-
mial feature selection and approximate ordering. In: Conf. on Uncertainty in Artif.
Intell (UAI) (2006)

18. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press (2004)
19. Bertsekas, D.: Nonlinear Optimization. Athena Scientific (1995)
20. van Someren, E., Wessels, L., Reinders, M.: Linear modeling of genetic networks

from experimental data. Intelligent Systems for Molecular Biology (ISMB 2000),
355–366 (2000)

21. Simon, I., Barnett, J., Hannett, N., Harbison, C., Rinaldi, N., Volkert, T., Wyrick,
J.J., Zeitlinger, J., Gifford, D., Jaakkola, T., Young, R.: Serial regulation of tran-
scriptional regulators in the yeast cell cycle. Cell 106, 697–708 (2001)

22. Iyer, V.R., Horak, C.E., Scafe, C.S., Botstein, D., Snyder, M., Brown, P.O.: Ge-
nomic binding sites of the yeast cell-cycle transcription factors sbf and mbf. Na-
ture 409, 533–538 (2001)

Evolution of Tandemly Arrayed Genes in

Multiple Species

Mathieu Lajoie, Denis Bertrand, and Nadia El-Mabrouk

DIRO - Université de Montréal - H3C 3J7 - Canada
{lajoimat,bertrden,mabrouk}@iro.umontreal.ca

Abstract. Tandemly arrayed genes (TAG) constitute a large fraction of
most genomes and play important biological roles. They evolve through
unequal recombination, which places duplicated genes next to the origi-
nal ones (tandem duplications). Many algorithms have been proposed to
infer a tandem duplication history for a TAG cluster in a single species.
However, the presence of different transcriptional orientations in most
TAG clusters highlight the fact that processes such as inversions also
contribute to their evolution. This makes those algorithms unsuitable in
many cases. To circumvent this limitation, we proposed in a previous
work an extended evolutionary model which includes inversions and pre-
sented a branch-and-bound algorithm allowing to infer a most parsimo-
nious scenario of evolution for a given TAG cluster. Here, we generalize
this model to multiple species and present a general framework to in-
fer ancestral gene orders that minimize the number of inversions in the
whole evolutionary history. An application on a pair of human-rat TAG
clusters is presented.

1 Introduction

A multigene family is a set of genes that have evolved by duplication from a
common ancestral gene, and share a similar sequence and usually a similar func-
tion. Members of a gene family in a given genome may appear in clusters, or
scattered in a single or many chromosomes. In this paper, we focus on families
of tandemly arrayed genes (TAG): copies that are adjacent on the chromosome.
TAGs have been shown to represent a large proportion of genes in a genome.
In particular, they represent about 14-17% of all genes in human, mouse and
rat [26]. Clusters of TAGs may vary in length from two to hundreds genes,
though small clusters are largely predominant (an average of 3 to 4 genes in
mouse, rat and human) [26]. They are involved in many different functions of
binding or receptor activities. In particular, the olfactory receptor genes consti-
tute the largest multigene family in the vertebrate genome, with several hundred
genes per species [1]. Other families of TAGs include the HOX genes [31], the
immunoglobulin and T-cell receptor genes [2], the MHC genes [17] and the ZNF
genes encoding for transcription factors [25].

TAGs are widely viewed as being generated solely by tandem duplications re-
sulting from unequal recombination [15] or slipped strand mispairing [3]. Such

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 96–109, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Evolution of Tandemly Arrayed Genes in Multiple Species 97

mechanisms have the effect of generating sequences of repetitive units with the
same transcriptional orientation. However, it is not infrequent to observe TAGs
with different orientations. In particular, Shoja and Zhang [26] have observed that
more than 25% of all neighboring pairs of TAGs in human, mouse and rat have
non-parallel orientations. This underlines the fact that other rearrangementmech-
anisms such as inversions should be considered in an evolutionary model of TAGs.

Based on the unequal recombination model of evolution, a large number of stud-
ies have considered the problem of reconstructing a tandem duplication history of
a TAGs family [5,11,12,27]. These are essentially phylogenetic inference methods
using the additional constraint that the resulting tree should induce a duplication
history according to the given gene order. When a gene tree is already available
for a gene family, a linear-time algorithm can be used to check whether it is a
duplication tree [32]. However, it is often impossible to reconstruct a duplication
history [16], due to other evolutionary events such as gene losses or genomic rear-
rangements [10]. In [6,21] we have considered an evolutionary model accounting
for both tandem duplications and inversions. Given a gene tree for a family of
TAGs, we developed an algorithm allowing to find the minimum number of inver-
sions in any possible evolutionary scenario for this family.

All the above methods are restricted to the analysis of TAGs located on a
single chromosome (and thus in a single species). However, the increasing avail-
ability of complete genomic sequences and of many different TAGs databases
[1,29] makes it possible to study the evolution of gene families with members
belonging to different species. Such a global evolutionary study may help deci-
phering the common origins of TAGs, highlighting the inter-species differences
and identifying the genetic basis of species-specific features. Various phylogenetic
studies have been conducted by biological groups on different TAGs families such
as the Zinc-Finger transcription factors in human and mouse [25], and the ol-
factory receptor genes in various mammalian species [1]. However no rigorous
approach has been developed so far to explain the non agreement between a
given gene tree of a TAGs family and a duplication and speciation history.

In this paper, we consider an evolutionary model of TAGs accounting for
duplication, speciation, gene loss and inversion events. This is a generalization
of [21] to TAGs located on different genomes. More precisely, given a gene tree
for a family of TAGs and their signed order on the genomes (chromosomes or
clusters), we aim to find an evolutionary scenario involving the minimum number
of inversions, and the corresponding gene orders of the ancestral genomes. The
Fitch model allows for the simultaneous duplication of several gene copies, but
there are now evidence that simple duplications are predominant over multiple
duplications [5,31]. As a first attempt, we only consider simple duplications.

This paper is organized as follows. After describing the evolutionary models in
Section 2, we present the general problem in Section 3. It is related to the more
classical one of inferring the gene order of the ancestral genomes in a species
tree minimizing a given genomic distance [23,24]. In Section 3.1, we present
an algorithm to infer the most parsimonious scenario of inversion on a single
branch of the species tree. In Section 3.2, we present a simple iterative method

98 M. Lajoie, D. Bertrand and N. El-Mabrouk

used to infer the ancestral gene orders minimizing the total number of inversions
in a species tree. It is based on the median problem, for which we propose a
branch-and-bound algorithm in Section 3.3. Finally, in Section 4, we test the
algorithm’s time-efficiency on simulated data, and present an application on a
pair of human-rat TAGs clusters.

2 The Evolutionary Model

The classical model of evolution considered for TAGs is based on tandem dupli-
cations resulting from unequal recombination during meiosis, which is assumed
to be the sole evolutionary mechanism (except point mutations) acting on se-
quences. Formally, from a single ancestral gene at a given position in the chro-
mosome, the locus grows through a series of consecutive duplications placing the
created copy next to the original one. Such tandem duplications may be simple
(duplication of a single gene) or multiple (simultaneous duplication of neighbor-
ing genes). In this paper, we only consider simple duplications. From now on, a
duplication will refer to a simple tandem duplication.

This model of evolution applies only to family of TAGs all located on the same
chromosome and having the same transcriptional orientation. In particular, it is
unsuitable to describe the evolution of a TAGs family containing members on
both DNA strands. To circumvent this limitation, we have proposed, in [21], an
extended model of duplications including inversions. In this paper, we further
extend the model to account for several genomes.

Consider a family of TAGs located on m different genomes. In addition to
the TAGs orders on each genome, all we can infer from the gene sequences is
a gene tree representing the global evolution of the gene family. Formally, an
ordered gene tree is a set (T, O), where T is a gene tree of the TAGs family
and O = (O1, O2, · · · Om) where Oi is the signed order of the family members in
genome i, for 1 ≤ i ≤ m. Thereafter, the transcriptional orientations of the genes
in an ordered gene tree (T, O) are specified by signs (+/−) in each Oi. We denote
by dinv(Oi, Oj) the inversion distance between the two signed permutations Oi

and Oj . Such a distance can be computed using the original Hannenhalli and
Pevzner algorithm[18], or any of the existing optimizations [4,20,28].

An ordered gene tree (T, O) can always be explained by a history H involving
duplication, gene loss, inversion and speciation events (DLIS history), as stated
in Lemma 1 below. We say that H is a DLIS history of (T, O). Hereafter, we
begin by formally defining a DLIS history (see Figure 1 for an illustration).

Definition 1. Let H = ((T 1, O1), · · · (T k, Ok), · · · (T n−1, On−1), (T n, On)) be a
sequence of n ordered gene trees. For each k, 1 ≤ k ≤ n, we denote by mk the
number of genomes represented in T k, and by Ok

i the gene order in genome i,
for 1 ≤ i ≤ mk.

We say that H is a DLIS history if and only if:

1. T 1 = v is the single leaf gene tree and O1 = (O1
1) = (±v) is one of the two

trivial orders;

Evolution of Tandemly Arrayed Genes in Multiple Species 99

2. For 1 < k < n, one of the four following situations hold:
a. Duplication event: There is an i, 1 ≤ i ≤ mk, such that T k+1 is obtained

from T k by adding two children u and w to a leaf v belonging to genome
i. Moreover:
– mk+1 = mk;
– Ok+1 is obtained from Ok by replacing ±v by (±u, ±w) in Ok

i .
b. Gene loss event: There is an i, 1 ≤ i ≤ mk, such that T k+1 is obtained

from T k by removing a leaf v belonging to genome i. Moreover, if v was
the only leaf in Ok

i , mk+1 = mk − 1. Otherwise, Ok+1
i is obtained from

Ok
i by deleting v and mk+1 = mk.

c. Inversion event: T k+1 = T k and there is an i, 1 ≤ i ≤ mk, such that
dinv(Ok

i , Ok+1
i) = 1. Moreover, Ok+1

j = Ok
j for j �= i and mk+1 = mk.

d. Speciation event: There is an i, 1 ≤ i ≤ mk, such that T k+1 is obtained
from T k by adding two children u and w to each leaf v belonging to
genome i. Moreover:
– mk+1 = mk + 1;
– Ok+1 is obtained from Ok by duplicating the order Ok

i .

Any DLIS history H of (T, O) induces a unique species tree S obtained from the
speciation events of H. We say that H is consistent with S (see Figure 1).

Let (T, O) be an ordered gene tree for a family of TAGs on m genomes
and suppose that the species tree S is known (otherwise we can take advan-
tage of our algorithm presented in [8]). Then a natural problem is to find a

1121 31 12 22 32 42 52 13 23 33

genome 1 genome 2 genome 3

speciation 1

speciation 1
speciation 2

speciation 2

1 2 3

Fig. 1. A DLIS history. Transcriptional orientations are indicated by signs, duplica-
tions by bold lines, gene losses by ’X’ and inversions by dashed lines. The resulting
TAGs orders are denoted as ik meaning “gene i in genome k”. For clarity, we omitted
successive identical configurations in each lineage. The induced species tree for the
three genomes is given right.

100 M. Lajoie, D. Bertrand and N. El-Mabrouk

DLIS history of (T, O) that is consistent with S. The existence of such a his-
tory is stated in Lemma 1 below. It follows from the existence of a duplica-
tion/speciation/loss history in the more general case of non-ordered gene families
generated by general duplications, e.g. not necessarily in tandem. More precisely,
given a gene tree T for a set of (unsigned) genes located on m genomes, and a
species tree S for these genomes, the classical reconciliation approach [9,13,22]
infers a duplication/speciation/loss history, involving a minimum number of gene
losses/duplications, that has led to the gene tree T .

Lemma 1. Given an ordered gene tree (T, O) on m genomes and a species tree
S for the m genomes, there is at least one DLIS history H of (T, O) consistent
with S.

Proof. Obtain a sequence of duplications (not necessarily in tandem), gene losses
and speciations from the reconciliation of T and S. From that sequence, construct
a DLIS history H′ = ((T 1, Q1), · · · , (T n = T, Qn) by applying the corresponding
rules in Definition 1 (case a., b. or d.). Then, obtain H from H′ by appending
the inversions required to transform Qn in O (case c. in Definition 1) ��

3 An Inference Problem

As the number of possible DLIS histories of (T, O) consistent with S can be
huge, we restrict ourselves to finding a most parsimonious one. The fact that T
and S are not affected by the inversion events allows us to proceed in two steps:

1. We infer the minimal number of gene losses/duplications and their localiza-
tion from the reconciliation of S and T , using the existing methods men-
tioned in the preceding section. This leads to a reconciled tree T ′, where
each internal node has two children and is associated either to a speciation
or a duplication event. Each speciation node corresponds to a gene that was
present in an ancestral genome before the corresponding speciation event.

This reconciled tree T ′ may contain new leaves that correspond to extinct
genes. Those leaves are irrelevant to our study and can be removed, leading
to a new tree T ′′ that may contain a number of speciation nodes with a
single child. They correspond to ancestral genes that were lost in one of the
two descendant lineages. An example is shown in the ordered reconciled tree
of Figure 2, which is simply a reconciled tree T ′′ with an order on its leaves.

2. We find the ancestral gene orders that minimize the total number of inver-
sions involved in a DLIS history of (T ′′, O). Formally, the problem considered
in this step is the following:

Minimum-DLIS problem

Input: An ordered reconciled tree (T, O).
Output: A gene order for each ancestral genome inducing a DLIS history of
minimum inversions.

From the general case of Definition 1, we now introduce the following re-
stricted evolutionary history: a Duplication/Inversion history (DI history) is

Evolution of Tandemly Arrayed Genes in Multiple Species 101

11 21 31 12 22 32 42 52 13 23 33

A

A

B

B

C
C

M
M

1 2 3

Fig. 2. The ordered reconciled tree induced by the DLIS history of Figure 1, with the
corresponding gene order at each ancestral genome preceding each speciation event.
The gene tree is “embedded” in the species tree. The dashed gene in genome M has no
descendants in lineage B, indicating a gene loss; black dots represent gene duplication.

an evolutionary history of TAGs in one species involving only duplication and
inversion events (case a. and c. of Definition 1).

Suppose now we are given an ordered reconciled tree (T, O) with an arbitrary
gene order for every internal node of S. There exists a DI history with a minimum
number of inversions for each branch of S, and the minimum number of inversion
in any DLIS history explaining (T, O) (and the ancestral gene orders) is the sum
of the inversions involved in those minimal DI histories. The next section focuses
on a single DI history.

3.1 The Generalized Minimum-DI Problem

This problem is a generalization of the Minimum-DI problem we presented
in [21], which consists in finding the minimum number of inversions required
to explain a single “rooted” ordered gene tree. Here the goal is to find the min-
imum number of inversions required to explain an ordered forest of gene trees,
associated to a given branch of the species tree (see Figure 2 and 3a). Formal
definitions follow.

Definition 2. An ordered forest of gene trees (F, R, O) is a set of n gene trees
F = {T1, T2, · · · Tn} rooted at R = {r1, r2 · · · rn} (ri is the ancestral gene that
gave rise to Ti) with an order O on the set of leaves of F . When an ancestral
order OR is imposed on R, we use the notation (F, OR, O).

Definition 3. Let OR = (r1, r2 · · · rn) be an ordered sequence of roots, and O1 =
(o1, o2, · · · on) be an ordered sequence of genes such that, for each 1 ≤ i ≤ n, oi is
a direct descendant of ri. A partial DI history rooted at OR is a sequence of or-
dered forests of gene trees H = ((F1, OR, O1), ..., (Fk−1, OR, Ok−1), (Fk, OR, Ok))
where (F1 is just a set of single leaf gene trees, and for 0 < i < k:

102 M. Lajoie, D. Bertrand and N. El-Mabrouk

1. Inversion event: If Fi+1 = Fi, then dinv(Oi, Oi+1) = 1.
2. Duplication event: If Fi+1 �= Fi, then Fi+1 is obtained from Fi by adding

two children u and w to one of its leaf v, and Oi+1 is obtained from Oi by
replacing v by (u, w), where u and w have the same sign as v.

Moreover, a partial duplication history is a partial DI history restricted to du-
plication events.

A partial duplication history gives rise to a duplication forest, defined as follows.

Definition 4. A duplication forest is an ordered forest of gene trees (F, OR, O)
which contains only duplications trees, and such that for every pair of roots ri, rj

in R, if ri precedes rj in OR, then all the leaves of Ti precedes all the leaves of
Tj in O. Moreover, the leaves of each Tk in F , must have the same sign as rk.

The following theorem is a generalization of the result obtained in [21] for a
single ordered gene tree.

Theorem 1. Let (F, OR, O) be an ordered forest of gene trees and (F, OR, O′)
be a duplication forest such that dinv(O, O′) = i is minimum. Then there exists
a partial DI history of (F, OR, O) with exactly i inversions. Moreover, i is the
minimum number of inversions involved in any partial DI history of (F, OR, O).

Proof. The proof uses arguments similar to those considered in [21], and will be
detailed in a full version of this extended abstract ��

Theorem 1 allows us to formulate the problem as follows:

Generalized-Minimum-DI problem

Input: An ordered forest of gene trees (F, OR, O),
Output: An order O′ on the leaves of F such that (F, OR, O′) is a duplication
forest and dinv(O, O′) is minimal.

For a branch represented by the forest (F, OR, O), we denote by DI(OR, O) the
minimal dinv(O, O′) defined above, and we call it the minimum DI value.

A Branch-and-Bound Algorithm. The algorithm is a generalization of the
one we presented in [21]. Given an ordered gene tree (T, O), the goal was to
find an order O′ minimizing the distance dinv(O, O′) that is compatible with T ,
i.e. such that (T, O′) is a duplication tree. As mentioned in [16], the considered
duplication trees are equivalent to binary search trees. Therefore, to enumerate
all the orders compatible with T , we associated a binary variable bi to each
internal node i of T as follows: each bi defines an order relation between the
left and right descendant leaves of i, i.e. by setting bi to 0 (respec. 1), we make
all the left descendants smaller than the right ones (respec. all left descendants
are larger than the right ones). Then an order O′ is compatible with T iff it is
defined by an assignment of all the binary variables bi in T , and all its genes
have the same sign (+ or −). If n is the number of leaves of T , this leads to 2n

distinct orders O′ compatible with T .

Evolution of Tandemly Arrayed Genes in Multiple Species 103

To avoid computing dinv(O, O′) for each order O′, we considered a branch-
and-bound strategy. The idea was to compute a lower bound on dinv(O, O′) as
we progressively define a partial order O∗, by updating the breakpoint graph of
(O, O∗) [18]. The bi values must be defined in a depth-first manner according to
T (see [21] for more details).

Generalization to an ordered forest of gene trees (F, OR, O) is straightfor-
ward. Indeed, let (T1, T2, · · · Tn) be the set of trees of F ordered according to
the order OR of their roots. Then an order O′ compatible with (F, OR), i.e. such
that (F, OR, O′) is a partial duplication tree, is the concatenation of n orders
(o′1, o

′
2, · · · o′n) such that o′i is compatible with Ti. Therefore, similarly to the pre-

ceding case, an order O′ is compatible with (F, OR) iff it is defined by an assign-
ment of all the binary variables bi in F , and for each 1 ≤ i ≤ n, all the genes
belonging to Ti have the same sign as ri (see Figure 3). The same branch-and-
bound strategy can then be used to explore the space of all possible orders.

1

1

0
T1T1T1 T2T2T2

r1r1r1 r2r2r2

111 222 333 444 555O O′

(a) (b) (c)

Fig. 3. (a) The ordered forest of gene trees corresponding to the branch (M, B) of the
tree in Figure 2 (F = {T1, T2}, OR = (r1, r2), O = (1, 2, 3, −4, −5)). (b) The gene trees
in a), with an arbitrary left/right orientation of the children at each internal node. (c)
The ordered forest of duplication trees (F, OR, O′) induced by an assignment of the bi

variables in b). The resulting order is O′ = (4, 2, 1, −3, −5), and dinv(O, O′) = 3.

3.2 A General Method Using the Median Problem

The Minimum-DLIS problem is related to the more classical one of inferring the
gene orders of the hypothetical ancestral genomes represented by the internal
nodes of a species tree. In this case, each species is characterized by a given gene
order, and the problem is to find the ancestral gene orders minimizing a given
genomic distance. The two distances that have been considered in the literature
are the breakpoint and inversion distances [23,24].

Although the case of ordered gene trees is more involved due to the fact
that the considered duplication are in tandem, the two problems are related,
suggesting a similar global approach summarized below.

1. Begin with an arbitrary order for each internal node of the species tree;
2. Traverse the tree in a depth-first manner. For each subtree consisting of

two sister branches (M, A) and (M, B) and a branch (C, M) where C is the

104 M. Lajoie, D. Bertrand and N. El-Mabrouk

immediate ancestor of M (see Figure 2), ignore the assigned order of M , and
reconstruct an order that minimizes the value:

DI(OM , OA) + DI(OM , OB) + DI(OC , OM).

3. Iterate step 2. a given number of times, or after convergence to a minimizing
configuration.

Step 1. can be improved by the use of a heuristic that will be detailed in a full
version of this extended abstract. Step 2. can be seen as a generalization of the
reversal median problem, which has been proved to be NP-hard [7]. To formally
define the median problem, we need to extend the notion of an ordered forest
of gene trees by allowing the order to be defined either for the leaves or for the
roots of the trees. An ordered forest of gene trees defined by a set of trees FXY ,
a set of roots X and a set of leaves Y will be denoted as (FXY , X, OY) and
called a leaf-ordered forest of gene trees if an order OY is defined on the leaves,
by (FXY , OX , Y) and called a root-ordered forest of gene trees if an order OX is
defined on the roots, and by (FXY , OX , OY) and called a fully-ordered forest of
gene trees if an order is defined for both the leaves and the roots.

The median problem is formulated as follows. Given two leaf-ordered forests
of gene trees (FMA, M, OA) and (FMB , M, OB) (M is the set of ancestral genes
generating both A and B) and a root-ordered forest of gene trees (FCM , OC , M),
the goal is to find an order OM minimizing the value:

DI(OM , OA) + DI(OM , OB) + DI(OC , OM)

The following section focuses on the median problem.

3.3 A Branch-and-Bound Algorithm for the Median Problem

To avoid considering each of the 2nn! possible signed orders OM , where n is the
number of genes of M , we consider a branch-and-bound strategy. The idea is
to compute a lower bound on DI(OM , OA), DI(OM , OB) and DI(OC , OM) as
we progressively extend the prefixes O∗

M of M . This is justified by the following
property.

Property 1. Let (F ∗
XY , O∗

X , O∗
Y) be a fully-ordered forest of gene trees obtained

from (FXY , OX , OY) by removing the tree rooted at the last element of OX , or
the leaf corresponding to the last element of OY . Then:

DI(O∗
X , O∗

Y) ≤ DI(OX , OY)

This bound can be used when we progressively construct the median candidate
order OM . The branch-and-bound strategy is explained below.

1. Consider an initial upper bound for the median problem and the empty
orders O∗

M , O∗
A, O∗

B and O∗
C .

Evolution of Tandemly Arrayed Genes in Multiple Species 105

Table 1. Average execution time (in seconds) for 1,000 ordered forests of gene trees /
Average fraction of the search space explored during the branch-and-bound

Median size
6 genes 8 genes 10 genes 12 genes

4 inversions 0.18 / 2 × 10−3 0.24 / 3 × 10−5 0.30 / 2 × 10−7 0.54 / 9 × 10−10

6 inversions 0.48 / 5 × 10−3 0.84 / 1 × 10−4 2.10 / 1 × 10−6 5.70 / 8 × 10−9

8 inversions 0.90 / 1 × 10−2 2.76 / 4 × 10−4 10.92 / 6 × 10−6 43.38 / 5 × 10−8

2. Construct O∗
M by adding a gene gM at the end of O∗

M , and construct O∗
A and

O∗
B by inserting the genes of OA and OB that are descendant of gM in the

right positions. Moreover, if gM is the descendant of a gene gC that is not in
O∗

C , then construct O∗
C by inserting this gene, otherwise O∗

C is unchanged.
3. Compute DI(O∗

M , O∗
A), DI(O∗

M , O∗
B) and DI(O∗

C , O∗
M), using the branch-

and-bound algorithm described in Section 3.1.
4. If DI = DI(O∗

M , O∗
A)+DI(O∗

M , O∗
B)+DI(O∗

C , O∗
M) is lower than the current

upper bound then: if OM is of size n then replace the current upper bound
by DI, otherwise go back to step 2.

5. If DI is larger than the current upper bound or OM is of size n, then stop
extending OM , and consider another possible gene for the last position of
OM , or backtrack to the preceding position if all genes have been considered
for the last position.

4 Results

4.1 Branch-and-Bound Efficiency

To measure the efficiency of our branch-and-bound algorithm, we simulated 1,000
DSI histories, each involving i inversions an a unique speciation event, leading to
two contemporary genomes (TAGs clusters) of 15 genes and an implicit median
containing k genes. Table 1 contains the execution times (on a standard PC) and
the average fraction of the search space explored for different values of i and k.

We observe that the execution times depend exponentially on the number
of inversions and on the ancestral order size. Nevertheless, it can be used on
moderately-sized TAG clusters within reasonable time (43 seconds on average
for a history implying an ancestral order of 12 genes and a total of 8 inversions).

4.2 Application on Biological Data

As a first application, we used our branch-and-bound algorithm to infer an an-
cestral gene order for a pair of human and rat olfactory TAGs clusters. The
results are shown in Figure 4. We see that this dataset is compatible with an
optimal DLIS history containing only one inversion event, that occurred before
the human-rat speciation.

106 M. Lajoie, D. Bertrand and N. El-Mabrouk

The human cluster is located on chr14@21.2 and the rat cluster on chr15@27.9.
Protein sequences and gene orders were obtained from the HORDE database
(CLIC #35) [1]. The sequences were aligned with ClustalW [30] and the gene
tree generated with MrBayes [14], using the Jones-Taylor-Thornton substitution
matrix [19] and performing 1,000,000 MCMC iterations.

O
R

1
0
G

3

O
R

1
0
G

1
P

O
R

1
0
G

2

O
R

4
E

2

O
R

4
E

1
P

O
lr1

6
3
9

O
lr1

6
4
0

O
lr1

6
4
1

O
lr1

6
4
2

O
lr1

6
4
3

O
lr1

6
4
4

O
lr1

6
4
5

Human
cluster

Rat
cluster

Fig. 4. The ordered reconciled tree obtained for the pair of olfactory receptor TAGs
clusters, and the inferred ancestral gene order at the time of human-rat speciation.
Transcriptional orientations are indicated by signs. The unique inversion occurred be-
fore human-rat speciation and is indicated by a black contour. The rightmost gene in
the ancestral TAGs cluster (dashed contour) has its unique descendant in the rat TAGs
cluster, indicating a gene loss in the human lineage after the speciation.

This first “simple” application only aims to give an example of a TAGs cluster
which is very likely to have evolved in agreement with our model of evolution
restricted to simple duplications and inversions, demonstrating its validity.

5 Conclusion

We have presented a formal approach to infer the ancestral gene orders inducing
a most parsimonious scenario of inversions in the evolution of a TAGs family in
multiple species.

The next step will be to develop heuristic methods to provide good initial
solutions for the branch-and-bound algorithm and allow the analysis of larger
TAG clusters.

Another important step would be the extension of the model to multiple du-
plications. However, gene losses are no longer independent from the duplication
events in this case [12]. Inferring a tandem duplication tree with multiple dupli-
cations and gene losses remains an open problem, even when inversions are not
taken into account and only one species is considered.

Evolution of Tandemly Arrayed Genes in Multiple Species 107

In addition to our model being restricted to simple duplications, the main
problem we face with the inference of TAGs evolutionary histories is the diffi-
culty to obtain a reliable gene tree for some families: events such as gene con-
versions and unequal crossover can create “mosaic” genes that share more than
one ancestor, and pseudogenization is a frequent process. Nevertheless, differ-
ent strategies could be used to cope with these problems and produce biological
knowledge from the present model. For example, the gene tree inference can be
facilitated by excluding the pseudogenes of the analysis, and the signal noise can
be reduced by choosing closely related species and excluding the period of time
that precedes the first speciation from the analysis.

Acknowledgments

This work was supported by grants from the “Fonds Québécois de la Recherche
sur la Nature et les Technologies” (D.B. and N.E.M.), the Natural Sciences and
Engineering Research Council of Canada (N.E.M.) and the Canadian Institutes
of Health Research (M.L.).

References

1. Aloni, R., Olender, T., Lancet, D.: Ancient genomic architecture for mammalian
olfactory receptor clusters. Genome Biology 7(10), R88 (2006)

2. Arden, B., Clark, S.P., Kabelitz, D., Mak, T.W.: Human T-cell receptor variable
gene segment families. Immunogenetics 42(6), 455–500 (1995)

3. Benson, G., Dong, L.: Reconstructing the duplication history of a tandem repeat.
In: ISMB1999. Proceedings of Intelligent Systems in Molecular Biology, Heidelberg,
Germany, pp. 44–53. AAAI, Stanford, California, USA (1999)

4. Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and
fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004.
LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)

5. Bertrand, D., Gascuel, O.: Topological rearrangements and local search method
for tandem duplication trees. IEEE Transactions on Computational Biology and
Bioinformatics 2(1), 15–28 (2005)

6. Bertrand, D., Lajoie, M., El-Mabrouk, N., Gascuel, O.: Evolution of tandemly re-
peated sequences through duplication and inversion. In: Bourque, G., El-Mabrouk,
N. (eds.) Comparative Genomics. LNCS (LNBI), vol. 4205, pp. 129–140. Springer,
Heidelberg (2006)

7. Caprara, A.: The reversal median problem. Journal on Computing 15(1), 93–113
(2003)

8. Chauve, C., Doyon, J.F., El-Mabrouk, N.: Inferring a duplication, speciation and
loss history from a gene tree. In: Tesler, G., Durand, D. (eds.) RECOMB 2007.
LNCS (LNBI), vol.4751, pp. 45–57. Springer, Heidelberg (2007)

9. Cotton, J.A., Page, R.D.: Going nuclear: gene family evolution and vertebrate
phylogeny reconcilied. In: Proceedings of the Royal Society B 269, 1555–1561 (2002)

10. Eichler, E., Sankoff, D.: Structural dynamics of eukaryotic chromosome evolution.
Science 301, 793–797 (2003)

108 M. Lajoie, D. Bertrand and N. El-Mabrouk

11. Elemento, O., Gascuel, O.: A fast and accurate distance-based algorithm to recon-
struct tandem duplication trees. Bioinformatics 18, 92–99 (2002)

12. Elemento, O., Gascuel, O., Lefranc, M-P.: Reconstructing the duplication history
of tandemly repeated genes. Molecular Biology and Evolution 19, 278–288 (2002)

13. Eulenstein, O., Mirkin, B., Vingron, M.: Comparison of annotating duplication,
tree mapping, and copying as methods to compare gene trees with species trees.
In: Mathematical hierarchies and biology. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, vol. 37 (1997)

14. Huelsenbeck, J.P., Ronquist, F.: MrBayes 3: Bayesian phylogenetic inference under
mixed models. Bioinformatics 19(12), 1572–1574 (2003)

15. Fitch, W.M.: Phylogenies constrained by cross-over process as illustrated by human
hemoglobins in a thirteen-cycle, eleven amino-acid repeat in human apolipoprotein
A-I. Genetics 86, 623–644 (1977)

16. Gascuel, O., Bertrand, D., Elemento, O.: Reconstructing the duplication history
of tandemly repeated sequences. In: Gascuel, O. (ed.) Mathematics of Evolution
and Phylogeny, pp. 205–235. Oxford University Press, New York (2005)

17. Geraghty, D.E., Koller, B.H., Hansen, J.A., Orr, H.T.: The HLA class I gene family
includes at least six genes and twelve pseudogenes and gene fragments. Journal of
Immunology 149(6), 1934–1946 (1992)

18. Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial al-
gorithm for sorting signed permutations by reversals). Journal of ACM 48, 1–27
(1999)

19. Jones, D., Taylor, W., Thornton, J.: The rapid generation of mutation data matri-
ces from protein sequences. Computer Applications in the Biosciences 8(3), 275–282
(1992)

20. Kaplan, H., Shamir, R., Tarjan, R.E.: A faster and simpler algorithm for sorting
signed permutations by reversals. SIAM Journal on Computing 29, 880–892 (2000)

21. Lajoie, M., Bertrand, D., El-Mabrouk, N., Gascuel, O.: Duplication and inver-
sion history of a tandemly repeated genes family. Journal of Computational Biol-
ogy 14(4), 462–478 (2007)

22. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM Journal on
Computing 30(3), 729–752 (2000)

23. Moret, B., Tang, J., Wang, L., Warnow, T.: Steps toward accurate reconstruc-
tions of phylogenies from gene-order data. Journal of Computer and System Sci-
ence 65(3), 508–525 (2002)

24. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phy-
logeny. Journal of Computational Biology 5, 555–570 (1998)

25. Shannon, M., Hamilton, A.T., Gordon, L., Branscomb, E., Stubbs, L.: Differential
expension of Zinc- Finger transcription factor loci in homologous human and mouse
gene clusters. Genome Research 13, 1097–1110 (2003)

26. Shoja, V., Zhang, L.: A roadmap of tandemly arrayed genes in the genomes of
human, mouse, and rat. Molecular Biology and Evolution 23(11), 2134–2141 (2006)

27. Tang, M., Waterman, M.S., Yooseph, S.: Zinc finger gene clusters and tandem gene
duplication. In: Proceedings of International Conference on Research in Molecular
Biology (RECOMB2001), pp. 297–304 (2001)

28. Tesler, G.: GRIMM: genome rearrangements web server. Bioinformatics 18(3), 492–
493 (2002)

29. Huntley, S., et al.: A comprehensive catalogue of human krab-associated zinc finger
genes: Insights into the evolutionary history of a large family of transcriptional
repressors. Genome Research 16, 669–677 (2006)

Evolution of Tandemly Arrayed Genes in Multiple Species 109

30. Thompson, J.D., Higgins, D.G., Gibson, T.J.: CLUSTAL W: improving the sen-
sitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic Acids Re-
search 22(22), 4673–4680 (1994)

31. Zhang, J., Nei, M.: Evolution of antennapedia-class homeobox genes. Genet-
ics 142(1), 295–303 (1996)

32. Zhang, L., Ma, B., Wang, L., Xu, Y.: Greedy method for inferring tandem dupli-
cation history. Bioinformatics 19, 1497–1504 (2003)

Selecting Genomes for Reconstruction of

Ancestral Genomes

Guoliang Li1, Jian Ma2, and Louxin Zhang3

1 Department of Computer Science
National University of Singapore (NUS), Singapore 117543

ligl@comp.nus.edu.sg
2 Center for Biomolecular Science and Engineering

University of California at Santa Cruz
Santa Cruz, USA

jianma@soe.ucsc.edu
3 Department of Mathematics, NUS, Singapore 117543

matzlx@nus.edu.sg

Abstract. It is often impossible to sequence all descendent genomes to
reconstruct an ancestral genome. In addition, more genomes do not neces-
sarily give a higher accuracy for the reconstruction of ancestral character
states. These facts lead to studying the genome selection for reconstruc-
tion problem. In this work, two greedy algorithms for this problem are
proposed and tested on computer simulation data as well as a biological
example.

1 Introduction

With more and more genomes having been sequenced, reconstructing ancestral
proteins and genomic sequences becomes a popular approach for understanding
the molecular origins and evolution of key components of virus, bacteria and
eukaryotic organisms. Ancestral protein sequences for ribonuclease [8,21], Tu
elongation factors [7], and steroid receptors [17] have been reconstructed and
validated experimentally. Partial or complete DNA sequences for the common
ancestor of placental mammals [1,11], HIV [6], and the 1918 flu virus [15] have
also been constructed.

Parsimony, maximum likelihood and Bayesian methods are used for the re-
construction of ancestral protein or DNA sequences (see [4] for details of these
methods). The reconstruction accuracy of these methods has been assessed by
both theoretical analysis [13,19,14] and random simulation [20,1,2,18]. These
analyses indicate that the topology of the phylogenetic tree relating the extant
genomes to the target ancestral genomes affects the reconstruction accuracy sig-
nificantly. For example, a starlike phylogeny allows the ancestral character states
to be more accurately inferred than other topologies [14,3] although the actual
situation is much more complicated [10]. Intuitively, more genomes should give
better reconstruction accuracy at the root of a phylogeny. However, this is not
always true even for a simple method like parsimony. Recently, we have shown

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 110–121, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Selecting Genomes for Reconstruction of Ancestral Genomes 111

that, in many phylogenetic trees, the accuracy of the ancestral state in the root
reconstructed with all the genomes is smaller than the accuracy of the ancestral
state reconstructed with only one genome (Refer to Section 3, and also see [9]
for details). This motivates us to study the following computational problem:

Given a phylogeny P on a set of genomes, an integer k and a reconstruc-
tion method M, find a subset of k genomes in the phylogeny that gives
the highest accuracy of reconstructing the ancestral genome at the root
of the phylogeny, using method M.

Another motivation for studying this problem is that, due to resource constraint,
it is often impossible to sequence all the extant genomes that are evolved from the
target ancestral genome. In this paper, we study the above genome selection for
reconstruction problem. We develop two greedy algorithms for it and test them
with the Fitch method on random simulation data as well as a biological example.

The rest of this paper is divided into six sections. In Section 2, we briefly
introduce the Fitch method and its accuracy analysis in a simple Jukes-Cantor
model. In Section 3, we demonstrate that more genomes are not necessarily bet-
ter in accuracy for reconstructing an ancestral genome. In Section 4, we present
two greedy algorithms for the genome selection for reconstruction problem. In
Section 5, we test our algorithms against random phylogenetic trees. In Section
6, we examine a biological example. In Section 7, we conclude the paper with a
few of remarks.

2 Parsimony Methods and Its Accuracy

2.1 A Simple Jukes-Cantor Evolutionary Model

Given the phylogenetic tree for a group of species, we assume that the character
evolves by a Markov process, starting with a state at the root and proceeding
to the leaves node by node. The probability that a node x receives a state tx
depends only on its parent node p and the conditions along the branch from p to
x. The evolutionary model specifies the probability that a character c evolves to a
character d on a branch from p to x as a conditional probability Pr[sx = d|sp = c].
Here, we consider a simple Jukes-Cantor model. In this symmetric model, there
are only two states, say 0 and 1, and the probability of a substitution change of
any sort on any branch would be the same.

2.2 Parsimony Reconstruction Method

For reconstructing character evolution, parsimony methods assign to each inter-
nal node those states that allow for the fewest number of substitutions through-
out the tree. In this paper, we study the genome selection for reconstruction
problem with respect to the parsimony method proposed by Fitch [5]. This par-
simony method assigns a set of states to each node one by one downward through
the tree, starting with the leaves and using the subsets previously computed for

112 G. Li, J. Ma and L. Zhang

the node’s children. For each leaf node, the observed state forms the state set.
Assume A is an internal node with children B and C. The following rule is used
to compute the state subset SA from the state subsets SB and SC :

SA =
{

SB ∪ SC if SB ∩ SC = φ,
SB ∩ SC if SB ∩ SC �= φ.

The state set at the root contains all the possible states that will be assigned
to it. We say that the method unambiguously reconstructs a state at the root
if the state set contains only that state and ambiguously reconstructs a state if
the state set contains both 0 and 1.

Note that the method presented in [13] (see also [12]) reconstructs the states
of the internal nodes based on the information from all the leaf nodes, which is
a little bit more complicated than the method described above. As far as the
accuracy of the root is concerned, it gives the same state set as the method
described above and hence has the same reconstruction accuracy at the root.

2.3 Reconstruction Accuracy

Assume the character evolves in a phylogeny with the root A according to a
probabilistic evolutionary model. The evolutionary model specifies a prior prob-
ability for each state at A. When we say D is a state configuration at the leaves,
we mean that it contains a state for each leaf in the phylogenetic tree. For a
state c and a state configuration D at the leaves, we let P [D|c] to denote the
probability that the state c at the root evolves into the states given by D at the
leaves in the phylogeny. Then the reconstruction accuracy of a method M is

Paccuracy =
∑
c,D

prior(c)P [D|c]I(c, D, M),

where I(c, D, M) = 1 if the method M reconstructs c correctly from D at the
root and 0 otherwise.

In this paper, we consider a symmetric evolutionary mode with two states 0
and 1. Hence, the reconstruction accuracy is independent of the prior distribution
of the states. The unambiguous reconstruction accuracy of the Fitch method is

Paccuracy =
∑
D

P [D|0]I(0, D, M) =
∑
D

P [D|1]I(1, D, M).

There are three different state subsets {0}, {1} and {0, 1} with two states 0
and 1. For a state set t, and a state s, we use PN [t|s] to denote the probability
that the state set t is computed at the node N by the Fitch’s method given the
true state s at N . It is not hard to see that Paccuracy = PA[{0}|0] = PA[{1}|1].

At a leaf x with observed state s, we have

Px[{s}|s] = 1, Px[{s′}|s] = Px[{0, 1}|s] = 0

Selecting Genomes for Reconstruction of Ancestral Genomes 113

for s′ �= s. Let N be an internal node with the children L and R. Then, for
c, d = 0, 1,

PN [{d}|c]
=

∑
x,y=0,1 Pr[sL = x|sN = c] Pr[sR = y|sN = c]PL[{d}|x]PR[{d}|y]

+
∑

x,y=0,1 Pr[sL = x|sN = c] Pr[sR = y|sN = c]

×{PL[{d}|x]PR[{0, 1}|y] + PL[{0, 1}|x]PR[{d}|y]}

and
PN [{0, 1}|c] = 1 − PN [{0}|c] − PN [{1}|c].

The above recurrence relations give immediately a dynamic programming ap-
proach for computing the reconstruction accuracy of the Fitch’s method, which
is used in our analysis in the rest of this paper. Such a method first appeared
in [13].

The ambiguous reconstruction accuracy of the method takes the ambiguous
state into consideration and is defined as

PA-accuracy = PA[{1}|1] +
1
2
PA[{0, 1}|1]

where the first term is the unambiguous reconstruction accuracy and the second
term in the expression simply says that, when either state 0 or 1 is equally
parsimonious as a root state, we select either state with equal probability.

3 More Genomes Are Not Necessarily Better

Counterintuitively, more genomes do not necessarily give better reconstruction
even for the parsimony methods [9]. The reason is that the reconstruction ac-
curacy is highly sensitive to the topology used for the reconstruction and more
genomes may introduce more noise in the reconstructed ancestral state. For com-
pleteness, we briefly summarize the partial results proved in [9] in this section.

We first consider the complete phylogenetic trees. Let T be the complete phy-
logeny with 4 leaves shown in Figure 1(a). We assume the conservation proba-
bility is p on any branch in T and q = 1 − p. For each node N , we denote the
true state at N by sN . Then, the conservation probability on each path from
the root to a leaf is

Ppath

= Pr[sx = 1|sA = 1]
= Pr[sB = 1|sA = 1] Pr[sx = 1|sB = 1] + Pr[sB = 0|sA = 1]

× Pr[sx = 1|sB = 0]
= p2 + q2,

where we assume x is a leaf below the node B.
Let tN be the reconstructed state set at a node N . For V = B, C and s, s′ =

0, 1,

Pr[tV |V = s] =

⎧⎨
⎩

q2 if tV = {s′} and s′ �= s,
p2 if tV = {s′} and s′ = s,
2pq if tV = {0, 1}.

114 G. Li, J. Ma and L. Zhang

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��

�� ����

����

��

��

��

��

�� ����

��

��

��

��

����

��
��
��
��

(a) (b)

(d) (e)(c)

A A

A A A

B B

B B B

C C

C C C

Fig. 1. (a) The complete phylogeny with 4 leaves; (b) The path topology; (c) The
∧-shape topology; (d) The Y -shape topology; (e) The W -shape topology

By this formula, the unambiguous reconstruction accuracy of using all the four
taxa is

Pwhole

= Pr[tA = {1}|sA = 1]
=

∑
x,y∈{0,1} Pr[sB = x|sA = 1] Pr[sC = y|sA = 1]Pr[tB = {1}|sB = x]

× Pr[tC = {1}|sC = y]
+

∑
x,y∈{0,1} Pr[sB = x|sA = 1]Pr[sC = y|sA = 1]

×{Pr[tB = {1}|sB = x] Pr[tC = {0, 1}|sC = y]
+ Pr[tB = {0, 1}|sB = x] Pr[tC = {1}|sC = y]}

= (p6 + q6 + 2p3q3) + 2[2p5q + 2pq5 + 2p2q4 + 2p4q2]
= (p3 + q3)2 + 4[p2q(p3 + q3) + pq2(p3 + q3)]
= (p2 + q2 − pq)(1 + pq).

Since
Ppath − Pwhole

= (p2 + q2) − (p2 + q2 − pq)(1 + pq)
= −(p2 + q2)pq + pq(1 + pq)
= 3p2q2.

we have Ppath > Pwhole unless p = 0, 1. Similarly, we can also show that the
unambiguous reconstruction accuracy of using the topologies in Figure 1(c),
1(d) and 1(e) is smaller than Ppath.

To find out how often the accuracy of using the whole phylogenetic tree to
reconstruct ancestral character states at the root is smaller than the conservation
probability on a path from the root to a leaf, we conducted simulation test by
generating random phylogenetic trees in the Yule model.

In the Yule model, a random phylogenetic tree grows recursively from a single
root node. In each step, one leaf in the current tree is selected to add two children
with equal probability. The procedure repeats until a phylogenetic tree with the
required number of leaves is generated.

For each set (N, p) of parameters, we generated five thousand random phy-
logenetic trees and count how many trees have the reconstruction accuracy less

Selecting Genomes for Reconstruction of Ancestral Genomes 115

0.5 0.6 0.7 0.8 0.9 1

1000

2000

3000

4000

5000

p

N
um

be
r

of
 tr

ee
s

0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1

p

R
ec

on
st

ru
ct

io
n

ac
cu

ra
cy

Fig. 2. (a) The number of the random phylogenetic trees in which the unambiguous
reconstruction accuracy from the longest (triangle line) or shortest (dot line) path is
better than the unambiguous reconstruction accuracy from the whole phylogeny. (b)
The unambiguous reconstruction accuracy of the whole tree (dot curve), shortest path
(triangle curve) and longest path (square curve).

than the conservation probability on the shortest or longest path from the root
to a leaf. Here, N denotes the number of leaves in the random trees and is set to
nine, fifteen, or twenty; p represents the conservation probability on each branch
and is set to 0.5 + 0.01i for each 0 ≤ i ≤ 49.

Figure 2(a) shows the number of randomly-generated phylogenetic trees in
which the conservation probability on the shortest path or longest path is larger
than the reconstruction accuracy of using the whole tree. When the conservation
probability p on each branch is in the range of 0.5 and 0.8, the conservation
probability on the shortest path to some leaf is better in most of the trees.
When p exceeds 0.9, the number of ‘bad’ trees decreases rapidly. Figure 2(b)
shows sampled reconstruction accuracy of these three different reconstructions.

We show the fact the more genomes do not always give better unambiguous
reconstruction accuracy in some phylogenetic trees. This observed fact also holds
for the ambiguous reconstruction accuracy [9].

4 Algorithms for Genome Selection

The counterintuitive observation in above section and the fact that limited re-
source prohibits one to sequence all the descendent genomes for ancestral recon-
struction motivate us to study the genome selection for reconstruction problem.
Formally, this problem is defined as

Genome selection for reconstruction
Instance: A phylogenetic tree P on a set of n genomes, a number k and a recon-
struction method M.

116 G. Li, J. Ma and L. Zhang

Question: Find k genomes in P that allows the ancestral character states at the
root of P to be reconstructed with the maximum accuracy, using method M.

Since the reconstruction accuracy depends on both the topology of the given
phylogeny and the conservation probability of each branch, the genome selection
for reconstruction problem is unlikely polynomial-time solvable although its NP-
hardness is not proved yet. In the rest of this section, we present two greedy
algorithms for it.

4.1 Forward Greedy Algorithm

The forward greedy algorithm selects the k genomes one by one based on accu-
racy increment. Initially, the algorithm chooses the genome that has the shortest
evolutionary distance from the root. In each of the following k − 1 steps, the al-
gorithm selects a genome that gives the maximum increment on reconstruction
accuracy. In summary, the forward greedy algorithm can be described as follows:

Forward Greedy Algorithm

1. Set S ← φ;
2. Add the nearest genome to S;
3. For i = 1, 2, · · · , k − 1 do {

for each genome g not in S, compute the accuracy Ag

of the reconstruction by applying M to S ∪ {g};
Add g to S if Ag is the maximum over all gs;
}

4. Output S.

4.2 Backward Greedy Algorithm

The backward greedy algorithm removes n−k genomes one by one by considering
the accuracy decrease. Initially, there are n genomes. In each of n − k steps,
the algorithm selects a genome whose removal leads to the least decrease in
reconstruction accuracy.

Backward Greedy Algorithm

1. Let S contain all the genomes in the phylogeny;
2. For i = 1, 2, · · · , n − k do {

for each genome g in S, compute the accuracy Ag

of the reconstruction by applying M to S − {g};
Remove g from S if Ag is the maximum over all g’s;
}

3. Ouput S.

Since the backward greedy algorithmstarts fromthe fullphylogeny, it isnot hard
to see that the backward greedy algorithm is not efficient as the forward greedy

Selecting Genomes for Reconstruction of Ancestral Genomes 117

algorithmespeciallywhen reconstructionmethod such as themaximum likelihood,
is used. However, as we will see below, this method has better performance.

5 Simulation Test

To evaluate the performance of the forward and backward greedy algorithms,
we apply them with the Fitch method on random phylogenetic trees generated
in the Yule model. For p = 0.75, 0.80, 0.85, 0.90, 0.95, 0.99 and N = 9, 16, we re-
spectively generated one hundred balanced and one hundred imbalanced random
trees with N leaves using the method described in the previous section.

For each random tree with nine leaves, we apply the two greedy algorithms to
find a three-leaf subset and a six-leaf subset; for each random tree with sixteen
leaves, we apply the two greedy algorithms to find a five-leaf subset and a ten-leaf
subset. The accuracy of reconstructing the character states at the root using the
found subset is computed and compared with the optimal accuracy over all the
subsets containing the desired number of genomes and the accuracy of using all
the genomes. Figure 3 shows the average accuracies from different algorithms on
one hundred balanced random trees. The left bar graph is the average accuracy
of six-leaf subsets from the balanced random phylogeny with nine leaf nodes, and
the right bar graph is the average accuracy of ten-leaf subsets from the balanced
random phylogeny with sixteen leaf nodes. The performance of the greedy algo-
rithms on the imbalanced trees with p < 0.9 is generally better (data not shown
here due to space limitation), which is consistent with the results in Section 3.

0.75 0.8 0.85 0.9 0.95 0.99
0

0.2

0.4

0.6

0.8

1
Forward
Backward
Exhaustive
Full

0.75 0.8 0.85 0.9 0.95 0.99
0

0.2

0.4

0.6

0.8

1
Forward
Backward
Exhaustive
Full

Fig. 3. The left and right bar graphs summarize the average reconstruction accuracy of
the subsets found by the two algorithms against the optimal accuracy on the randomly
generated phylogenetic trees with nine and sixteen leaves respectively

In these tests, the algorithms can identify subsets of genomes that result
in better reconstruction accuracy than obtained using all genomes in the tree.
When the conservation probability p = 0.75, the accuracy from the backward
greedy algorithm on the three-leaf subset of the nine-leaf phylogeny is always
better than the accuracy from the full phylogeny (data not shown). As the
conservation probability increases, the greedy algorithms obtain better accuracy
less frequently.

118 G. Li, J. Ma and L. Zhang

Both tests also indicate that the backward greedy algorithm yields higher re-
construction accuracy than the forward greedy algorithm in about 80% random
trees. But, as we mentioned earlier, the drawback of the backward greedy algo-
rithm is that it is time-consuming, especially when the phylogenetic tree is large
and maximum likelihood or a Bayesian method is used for reconstruction.

Furthermore, Figure 3 shows that, on average, the accuracy from the greedy
algorithms are comparable to, if not better than, the accuracy from the full
phylogeny. This provides the support for selecting a subset of the genomes to
reconstruct the ancestral genomes when there are resource constraints and we
can not sequence all the extant genomes in the domain of interest.

0.1 0.2 0.5 1 2 5
0

0.2

0.4

0.6

0.8

1

Height

A
ve

ra
ge

 a
cc

ur
ac

y

Forward
Backward
Exhaustive
Full

0.1 0.2 0.5 1 2 5
0

0.2

0.4

0.6

0.8

1

Height

A
ve

ra
ge

 a
cc

ur
ac

y

Forward
Backward
Exhaustive
Full

Fig. 4. Average accuracy under different tree heights. The left and right bar graphs
summarize the average unambiguous reconstruction accuracy and ambiguous recon-
struction of the subsets found by the two algorithms against the optimal accuracy
from exhaustive search on the randomly generated phylogenetic trees with three-leaf
subsets on nine-leaf phylogeny respectively. The x-axis is the height of the trees and
the y-axis is the average accuracy under the individual heights.

We also generated random trees with different heights using Evolver in the
PAML package (http://abacus.gene.ucl.ac.uk/software/paml.html). We consid-
ered the trees with nine and sixteen leaves. The parameters used to generate the
trees are: 10 for Birth rate, 5 for Death rate, 1 for Sampling fraction, and 0.1, 0.2,
0.5, 1, 2, 5 for height. The height means the sum of the branch lengths from the
root to all leaf nodes. For each possible conbination of parameter values, we gen-
erated one hundred random trees and estimated the transition probability along
each branch using the Jukes-Cantor model. The left panel of Figure 4 shows the
average unambiguous reconstruction accuracy for different heights. The right
panel of Figure 4 shows the average ambiguous reconstruction accuracy for dif-
ferent heights. In both cases, the solutions output by our greedy algorithms are
near optimal. Note also that, for ambiguous reconstruction accuracy, the back-
ward greedy algorithm outperforms the forward greedy algorithm.

Unlike the unambiguous reconstruction accuracy, the ambiguous reconstruc-
tion accuracy from the full phylogeny is better on average, indicating that more
genomes introduce more noise. It seems true that more genomes always result
in higher ambiguous reconstruction accuracy in an ultrametric phylogenetic tree

Selecting Genomes for Reconstruction of Ancestral Genomes 119

 0.342209
0.0 0.1 0.2 0.3

N

M
tenrec

elephant

L

armadillo

K
hedgehog

J
rfbat

I
dog

cow

H

G
rabbit

F
rat

mouse

E

galago

D

marmoset

C

B
macaque

baboon

A
human

chimp

0 5 10 15

0.7

0.8

0.9

1

Number of leaf nodes selected

A
cc

ur
ac

y

Forward
Backward
Exhaustive

Fig. 5. A phylogenetic tree in the reconstruction of the Boreoeutherian ancestor and
the unambiguous reconstruction accuracies of the greedy algorithms on this tree. In the
left graph, the branch lengths are the substitution rate. In the right graph, the solid line
with triangles represents the accuracies from the forward greedy algorithm, the dashed
line with squares represents the accuracies from the backward greedy algorithm, and
the dotted line with diamonds represents the accuracies from the exhaustive search.

in which all the paths to a leaf have the equal height. However, it is not known
how to prove this hypothesis.

6 A Biological Example

We consider the reconstruction of the so-called Boreoeutherian ancestor where a
rapid radiation of many different lineages occurred. We applied the both forward
and backward algorithms to the phylogeny shown in Figure 5 (see [16]). Among
the sixteen extant species of this phylogenetic tree, the genomes of human, chimp,
macaque, rat, mouse, and dog have been sequenced for the first time; other
genomes have been partially sequenced.

In this example, we examined the expected accuracy of the reconstruction of
the four nucleotides on each base in the Boreoeutherian ancestor. The branch
weight in the phylogeny is the substitution rate. Therefore, under the Jukes-
Cantor model, we assume that, for each branch, the conservation probability
is one minus the branch weight and the probability of one nucleotide replacing
another is one third of the substitution rate. Since the true ancestral nucleotide
residues are unknown at the Boreoeutherian ancestor, it is impossible to obtain
the true reconstruction accuracy. As a result, we calculated the expected recon-
struction accuracy using the formula stated in Section 2.3. (Here, we considered
four states, rather than two states in the model used in section 2 and section 3.)

For each of k from one to sixteen, the reconstruction accuracy obtained using k
genomes, estimated by the greedy algorithms, are compared in Figure 5. When
k = 1, 2, the forward greedy algorithm performed similarly to the exhaustive
search algorithm. When k = 3, all three algorithms obtained similar accuracy.
When k > 3, the performance of the backward greedy algorithm is similar to
the exhaustive search algorithm, and the performance of the forward greedy

120 G. Li, J. Ma and L. Zhang

algorithm is worse. For example, when k = 8, the backward algorithm output the
following genomes: human, dog, galago, mouse, rabbit, dog, armadillo, elephant,
leading to the unambiguous reconstruction accuracy as high as 93.6%, which is
quite near the accuracy 94.6% obtained using the full phylogeny.

7 Conclusion

It is well known that parsimony method is not consistent when the branches are
long more characters do not lead to the right phylogeny (see Chapter 9 of [4]
for details). Here, we observe that more genomes are not necessarily better in
the reconstruction of ancestral character states with a given phylogeny, giving a
complementary example in which more data is not necessarily better.

Motivated by the above counterintuitive result and the impossibility of se-
quencing all the descendent genomes for ancestral genome reconstruction, we
have studied the genome selection for reconstruction problem in this work. We
proposed two greedy algorithms for the problem and tested them with simula-
tion data. The experiment results showed that, in most of the cases, the accuracy
from the greedy algorithms is comparable to the highest accuracy of using the
same number of genomes; it is also comparable to, if not better than, the ac-
curacy of using all the genomes in the full phylogeny. In general, the forward
algorithm is more straightforward, but has poor performance compared with the
backward greedy algorithm.

We also tested our algorithms on the reconstruction of the Boreoeutherian an-
cestor of the placental mammals. The test shows that using only eight genomes
identified by the backward greedy algorithm, an expected reconstruction accu-
racy of 93.6% can be obtained. It is quite close to the accuracy obtained with
the full phylogeny, namely 94.6%. This indicates that selecting the genomes for
ancestral genome reconstruction is also practical.

Acknowledgment

The authors would like to thank the reviewers and D. Durand for their valuable
suggestions on revising the paper. LX Zhang gratefully acknowledged the NUS
ARF grant R-146-000-068-112 and NSFChina3052802 for partially supporting
this project. He also thanks Webb Miller for stimulating this research by pointing
out the paper [10] to him.

References

1. Blanchette, M., Green, E.D., Miller, W., Haussler, D.: Reconstructing large regions
of an ancestral mammalian genome in silico. Genome Res. 14, 2412–2423 (2004)

2. Cai, W., Pei, J.M., Grishin, N.V.: Reconstruction of ancestral protein sequences
and its application. BMC Evol. Biol. 4, e33 (2004)

3. Evens, W., Kenyon, C., Peres, Y., Schulman, L.J.: Broadcasting on trees and the
ising model. Annals of Applied Prob. 10, 410–433 (2000)

Selecting Genomes for Reconstruction of Ancestral Genomes 121

4. Felsenstein, J.: Inferring Phylogenies, Sinauer Associates. Sunderland, Mas-
sachusetts (2004)

5. Fitch, W.M.: Toward Defining the Course of Evolution: Minimum Change for a
Specific Tree Topology. Systematic Zoology 20, 406–416 (1971)

6. Hillis, D.M., Huelsenbeck, J.P., Cunningham, C.W.: Application and accuracy of
molecular phylogenies. Science 264, 671–677 (1994)

7. Gaucher, E.A., Thomson, J.M., Burgan, M.F., Benner, S.A.: Inferring the palaeoen-
vironment of ancient bacteria on the basis of resurrected proteins. Nature, 285–288
(2003)

8. Jermann, T.M., Opitz, J.G., Stackhouse, J., Benner, S.A.: Reconstructing the evo-
lutionary history of the artiodactyl ribonuclease superfamily. Nature 374, 57–59
(1995)

9. Li, G.L., Steel, M., Zhang, L.X.: More taxa are not necessarily better for the
reconstruction of ancestral sequence by parsimony. Manuscript (2007)

10. Lucena, B., Haussler, D.: Counterexample to a claim about the reconstruction of
ancestral character states. Syst. Biol. 54, 693–695 (2005)

11. Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette,
M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral
genome. Genome Res. 16, 1557–1565 (2006)

12. Maddison, W.P., Maddison, D.R.: MacClade: analysis of phylogeny and character
evolution. Version 3, Sinauer, Sunderland, MA

13. Maddison, W.P.: Calculating the probability distributions of ancestral states re-
constructed by parsimony on phylogenetic trees. Systematic Biology 44, 474–481
(1995)

14. Schultz, T.R., Cocroft, R.B., Churchill, G.A.: he reconstruction of ancestral char-
acter states. Evolution 50, 504–511 (1996)

15. Taubenberger, J.K., Reid, A.H., Lourens, R.M., Wang, R., Jin, G., Fanning, T.:
Characterization of the 1918 influenza virus polymerase genes. Nature 437, 889–893
(2005)

16. The ENCODE Project Consortium, Identification and analysis of functional ele-
ments in 1% of the human genome by the ENCODE pilot project, Nature, 447,
799-816 (2007)

17. Thornton, J.W., Need, E., Crews, D.: Resurrecting the ancestral steroid receptor:
ancient origin of estrogen signaling. Science 301, 1714–1717 (2003)

18. Williams, P.D., Pollock, D.D., Blackburne, B.P., Goldstein, R.A.: Assessing the
accuracy of ancestral protein reconstruction methods. PLoS Comput Biol. 2, e69
(2006)

19. Yang, Z.H., Kumar, S., Nei, M.: A new method of inference of ancestral nucleotide
and amino acid sequences. Genetics 141, 1641–1650 (1995)

20. Zhang, J., Nei, M.: Accuracies of ancestral amino acid sequences inferred by par-
simony, likelihood, and distance methods. J. Mol. Evol. 44(S1), 139–146 (1997)

21. Zhang, J., Rosenberg, H.F.: Complementary advantageous substitutions in the evo-
lution of an antiviral RNase of higher primates. Proc. Natl. Acad. Sci. USA 99,
5486–5491 (2002)

A Heuristic Algorithm for Reconstructing

Ancestral Gene Orders with Duplications

Jian Ma1, Aakrosh Ratan2, Louxin Zhang3, Webb Miller2, and David Haussler1

1 Center for Biomolecular Science and Engineering,
University of California, Santa Cruz, CA 95064, USA

jianma@soe.ucsc.edu
2 Center for Comparative Genomics and Bioinformatics
Penn State University, University Park, PA 16802, USA

3 Department of Mathematics,
National University of Singapore, Singapore 117543

Abstract. Accurately reconstructing the large-scale gene order in an
ancestral genome is a critical step to better understand genome evolu-
tion. In this paper, we propose a heuristic algorithm for reconstructing
ancestral genomic orders with duplications. The method starts from the
order of genes in modern genomes and predicts predecessor and succes-
sor relationships in the ancestor. Then a greedy algorithm is used to
reconstruct the ancestral orders by connecting genes into contiguous re-
gions based on predicted adjacencies. Computer simulation was used to
validate the algorithm. We also applied the method to reconstruct the
ancestral genomes of ciliate Paramecium tetraurelia.

Keywords: gene order reconstruction, duplication, contiguous ancestral
region.

1 Introduction

The increasing number of genome sequences becoming available makes it feasi-
ble to computationally reconstruct ancient genomes of related species that have
undergone genome rearrangements. The heart of this problem is to “undo” these
large scale rearrangements and restore the ancestral gene order. Previous stud-
ies mainly focused on solving the median problem, which is either based on
reversal (inversion) distance or breakpoint distance. In this problem one tries
to reconstruct the common ancestor of two descendant genomes using one addi-
tional outgroup genome. Unfortunately, the median problem doesn’t have exact
and efficient algorithms [1,2]. In the past, heuristic programs for both break-
point median problem and reversal median problem have been proposed [3,4,5].
But the discrepancy between the computational prediction and the result from
cytogenetic experiments [6,7] suggests a need to explore further computational
methods for ancestral genome reconstruction.

In our recent work [8], we proposed a new approach for reconstructing the an-
cestral order based on the adjacencies of orthologous genomic content in modern

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 122–135, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Heuristic Algorithm for Reconstructing Ancestral Gene Orders 123

species, which essentially avoids solving any rearrangement median problem. The
critical procedure of the method is analogous to Fitch’s parsimony algorithm [9].
Instead of inferring ancestral nucleotides, we infer the locally parsimonious pre-
decessor and successor relationships of the orthologous conserved segments in
the ancestor, in this case the ancestor of most placental mammals, known as the
Boreoeutherian ancestor. Another procedure then connects these segments into
29 contiguous ancestral regions (CARs). Our result agrees with the cytogenetic
prediction fairly well [10].

However, the main drawback of the method in [8] is that it doesn’t handle
duplications. Indeed, duplications (including segmental duplications and tandem
duplications) have a great impact on genome evolution [11]. Some previous the-
oretic studies [12,13,14] have included duplications (sometimes with loss) along
with rearrangements. In this paper, we extend the method in [8] and propose
an efficient heuristic approach to incorporate duplications into analysis when we
are inferring ancestral gene orders.

2 Methods

2.1 Definitions

In this paper, we use the term gene to represent an atomic evolutionary unit that
has never been broken due to breakpoints caused by any operations (duplication
or rearrangement). If two genes are derived from a common ancestral gene, then
they belong to the same gene family. We use g[x] to represent the gene x in
genome g. Also, if two genes from the same family x are in the same genome
g, then we denote these genes as g[x.i] and g[x.j] (i �= j). A chromosome of
a modern or ancestral genome consists of a list of genes where each gene has
a sign (orientation) that is either positive (+) or negative (−). The reverse
complement of a chromosome is obtained by reversing the list and flipping the
sign of each gene. A genome is a set of chromosomes.

If genome g contains gene x, then the predecessor pg(x) is defined as the
gene that immediately precedes x on the same chromosome. Predecessor has a
sign. In the opposite orientation, pg(−x) immediately precedes −x in the reverse
complement of the same chromosome. We set pg(x) = ΦA if x appears first on
a chromosome. The successor sg(x) of x is defined analogously. And we also
set sg(x) = ΦZ if x appears last on a chromosome. For instance, let g have the
chromosome (1 −4.1 −3 4.2 5 2). Then pg(1) = ΦA, pg(2) = 5, pg(−3) = −4.1,
sg(−4.1) = −3, pg(−1) = 4.1, sg(−5) = −4.2, etc.

In addition to speciation events, the original ancestral genes evolve through
large-scale evolutionary operations which include insertion/deletion, rearrange-
ments (inversion, translocation, fusion/fission), and tandem and segmental du-
plications. Consequently, we have a different number of genes and different gene
orders in present day genomes. Our goal is to reconstruct the order and ori-
entation of genes in the target ancestral genome. We call each reconstructed
chromosome a contiguous ancestral region (CAR).

124 J. Ma et al.

2.2 Species Tree, Gene Tree, and Reconciled Tree

A species tree is a full binary tree describing the phylogeny among differ-
ent species (Fig.1(A)). All the bifurcating ancestral nodes represent speciation
events, while leaves correspond to modern species. Each branch in the tree has
branch length d indicating the evolutionary distance. Along the branch between
two species (from ancestor to descendant), evolutionary operations could hap-
pen. In this paper, we assume that the species tree is already known, and it has
been rooted and directed.

CD A B

G

E

F

D[a.1] D[a.2] C[a] A[a.1] B[a.1] A[a.2] B[a.2]

E[a.1] E[a.2]

H[a]

I[a]

F[a]

C[b.1] C[b.2]D[b] A[b.1] B[b.1] A[b.2] B[b.2]

E[b.1] E[b.2]

H[b]

J[b]

F[b]

(A) (B) (C)

Fig. 1. (A) Species tree of modern species A, B, C, and D. Gene trees of gene family
a and b are in (B) and (C), respectively. Branch length d(D[a.1], I [a]) + d(I [a], F [a])
in (B) is equivalent to the branch length d(D, G) + d(F, G) in the species tree. We
also have d(D[b], F [b]) > d(D, G)+d(F, G). For other branch lengths in the gene trees,
we have: d(A[a.1], E[a.1]) = d(A[a.2], E[a.2]) = d(A[b.1], E[b.1]) = d(A[b.2], E[b.2]),
d(B[a.1], E[a.1]) = d(B[a.2], E[a.2]) = d(B[b.1], E[b.1]) = d(B[b.2], E[b.2]),
d(D[a.1], I [a]) = d(D[a.2], I [a]), d(C[b.1], J [b]) = d(C[b.2], J [b]), d(E[a.1], H [a]) =
d(E[a.2], H [a]) = d(E[b.1], H [b]) = d(E[b.2], H [b]), d(H [a], F [a]) = d(H [b], F [b]),
d(C[a], F [a]) = d(C[b.1], J [b]) + d(J [b], F [b]).

A gene tree, on the other hand, is an unrooted tree, characterizing the rela-
tionships among genes in the same gene family across different species (Fig.1(B)
and (C)). It also has branch lengths associated with each branch in the tree. In
this paper, we have two assumptions for gene trees: (1) the duplication events
have been dated and they are consistent with what happened in nature, e.g. du-
plication event I[a] in Fig.1(B); (2) in the gene tree, all the branch lengths are ex-
act. Therefore, if in the following reconciliation step, a node in the gene tree turns
out to correspond to a speciation event, then it has a perfect match to the node in
the species tree, e.g. in Fig.1 the distance from A[a.1] to E[a.1] in (B) is exactly
the same as the distance from A to E in (A), i.e. d(A[a.1], E[a.1]) = d(A, E).

A reconciled tree is a mapping between all gene trees and the species tree
with gene duplications and losses being postulated [15]. In order to get the rec-
onciled tree, we merge the unrooted gene trees into the rooted species tree. A
reconciled tree, denoted as T, represents all speciation and duplication events
that have left a record of their effects in the leaf genomes. We start with the
species tree and reconcile the gene trees into it one at a time. The species
tree as well as the two gene trees in Fig.1 can be reconciled into Fig.2(A).
Our reconciliation algorithm is less complicated than the traditional methods,

A Heuristic Algorithm for Reconstructing Ancestral Gene Orders 125

e.g. [16] and [17], because in our case the true species tree is known and the
distances in the gene trees are exact. (See Appendix for detailed reconciliation
algorithm).

Each reconciliation labels the bifurcating nodes of the gene tree being recon-
ciled as either duplication nodes or speciation nodes, maps the speciation nodes
to the corresponding speciation nodes in the species tree, and maps the dupli-
cation nodes to inferred duplication nodes along the branches of the species tree
(Fig.2(A)). The final reconciled tree includes these additional duplication nodes
(Fig.2(B)). Each node in the reconciled tree is a genome. If there are duplications
that occurred before the root of the species tree, then the root of the reconciled
tree is an ancestor of the species tree root, and these ancient duplications are
represented on an additional path leading from the root in reconciled tree to the
root of the species tree within it, e.g. node K in Fig.2.

During the reconciliation, genes are also added along the branches of each
gene tree to represent intermediate forms that are inferred to have existed at
duplication branches but do not appear in the original gene tree for the family
(Fig.2(A), e.g. gene a in J). The resulting gene trees are called augmented
gene trees and denoted Ta for gene family a. For each node x in Ta, there is a
mapping φ that maps x to a node y in T, i.e. y = φ(x), indicating the genome y
that gene x belongs to. Also, the root of an augmented gene tree need not always

H

A B

E

F

D[a.1] D[a.2] C[a] A[a.1] B[a.1] A[a.2] B[a.2]

E[a.1] E[a.2]

H[a]

I[a]

F[a]

C[b.1] C[b.2]D[b] A[b.1] B[b.1] A[b.2] B[b.2]

E[b.1] E[b.2]

H[b]

J[b]

F[b]

(B)(A)

(D)

G

C

J

D

 I

J[a]

G[a]

I[b]

G[b.2]

E[a.1] E[a.2]

H[a]

F[a]

G[b.1]

E[b.1] E[b.2]

H[b]

F[b]

G[b.2]

A[a.1] A[a.2]A[b.1] A[b.2] B[a.1] B[a.2]B[b.1] B[b.2]

J[a] J[b]

C[a] C[b.2]C[b.1]

I[a] I[b]

D[a.1] D[b]D[a.2]

(C)

K[b]

K

K[b]

G[b.1]

G[a]

Fig. 2. (A) The reconciled tree from species tree and gene trees of gene family a and
b. Node I , J , K, and H show four duplications; K is an ancient duplication. (B) A
simplified form of reconciled tree T. (C) augmented gene tree Ta. (D) Tb.

126 J. Ma et al.

map to the root of the reconciled tree. If the gene family is first introduced by
an insertion event, then the last common ancestor in the reconciled tree of all
the observed genes in the family may be a node below the root. For example, in
Ta the root does not map to K in the reconciled tree. We could interpret gene
family a as an insertion before G but after K in the reconciled tree.

Along branch h to g in the reconciled tree, we define Ãh(g[x]) as the direct
ancestor of g[x] in h and D̃g(h[x]) as the set of direct descendants of h[x]
in g. Note that D̃(h[x]) could contain two descendants if x is duplicated at h. If
g[x] has no ancestor, then Ãh(g[x]) = ∅. Conversely, if h[x] has no descendant
in g, D̃g(h[x]) = ∅. For example, in Fig.2, ÃE(B[a.1]) = E[a.1], D̃C(J [b]) =
{C[b.1], C[b.2]}.

2.3 Reconstructing Ancestral Adjacency

After obtaining a reconciled tree T and augmented gene trees Ti (for all gene
family i), our goal is to determine a set of lists of gene orders that closely
approximates the genome structure of the species corresponding to a target
ancestral genome in T.

For any genome g, we associate with each gene x two sets of signed genes,
denoted Pg(x) and Sg(x), giving potential predecessors and successors of x rel-
ative to chromosomes of g. If g is a modern genome, Pg(x) = {pg(x)} and
Sg(x) = {sg(x)}, for each x. If g does not contain x, then both sets are empty.
We also define that Ãh(Pg(x)) = {Ãh(yi) | yi ∈ Pg(x)}. D̃h(Pg(x)) can be
defined analogously.

We use Ng to denote the number of genes in genome g, which can be counted
directly from the reconciled tree. For example, NE = 4 in the example in Fig.2.

The inference procedures of predecessor and successor associated with each
gene in the gene tree is similar to the method in [8]. The first stage of the al-
gorithm works in a bottom-up fashion. The general idea is that, for each node
π in the gene tree, we compute its predecessor set according to the following
rule: If π is a leaf, then predecessor set consists of the unique predecessor. Oth-
erwise, assume π has children τ and ϕ; then, the predecessor set is equal to the
intersection or union of the predecessor sets of τ and ϕ depending on whether
their predecessor sets are disjoint or not. The second stage works in a top-down
fashion to adjust the predecessor sets. Similarly, we infer the successors.

The procedure Get-Predecessor-Successor-Bottom-Up(root(Ti)) con-
structs Pg(x) and Sg(x) for each gene x of gene family i in every ancestral genome
g, where root(Ti) denotes the root of Ti. Suppose π is the current node and τ and
ϕ are the two direct descendants of π in Ti. Note that either τ or ϕ might be null.

Get-Predecessor-Successor-Bottom-Up(π)
1 if π is not null and π is non-leaf node
2 then Get-Predecessor-Successor-Bottom-Up(τ)
3 Get-Predecessor-Successor-Bottom-Up(ϕ)
4 h ← φ(π); f ← φ(τ); g ← φ(ϕ)
5 if ‖ Ãh(Pf (τ)) ∩ Ãh(Pg(ϕ)) ‖�= 0

A Heuristic Algorithm for Reconstructing Ancestral Gene Orders 127

6 then Ph(π) ← Ãh(Pf (τ)) ∩ Ãh(Pg(ϕ))
7 else Ph(π) ← Ãh(Pf (τ)) ∪ Ãh(Pg(ϕ))
8 if ‖ Ãh(Sf (τ)) ∩ Ãh(Sg(ϕ)) ‖�= 0
9 then Sh(π) ← Ãh(Sf (τ)) ∩ Ãh(Sg(ϕ))

10 else Sh(π) ← Ãh(Sf (τ)) ∪ Ãh(Sg(ϕ))

The root of the reconciled tree T is not always the target genome we want to
reconstruct. Therefore, we first infer PR(x) and SR(x) in the common ancestor
R in T. Then we propagate PR(i) and SR(i) down the tree until we reach the tar-
get ancestor α. We use Adjust-Ancestor-Top-Down to adjust the original
Pg(xi) and Sg(xi) for every gene xi in genome g leading from R to α, assuming
that the path from R to α has already been recorded (the .next field means the
next node on the path from R to α).

Adjust-Ancestor-Top-Down(R, α)
1 h ← R; g ← R.next
2 while h �= α
3 do for each xi ∈ X where X = x1, −x1, ..., xNg , −xNg

4 do if ‖ Ãh(Pg(xi)) ∩ Ph(Ãh(xi)) ‖�= 0
5 then Pg(xi) ← Pg(xi) ∩ D̃g(Ãh(Pg(xi)) ∩ Ph(Ãh(xi)))
6 if ‖ Ãh(Sg(xi)) ∩ Sh(Ãh(xi)) ‖�= 0
7 then Sg(xi) ← Sg(xi) ∩ D̃g(Ãh(Sg(xi)) ∩ Sh(Ãh(xi)))
8 h ← g; g ← g.next

At this point, in the target ancestor α, we have had potential predecessors and
successors for each gene. The remaining task is to reconstruct the order based
on adjacency information.

2.4 From Ancestral Adjacency to Ancestral Gene Order

We first construct a predecessor graph GP
α and a successor graph GS

α for
the target genome α. The digraph GP

α = (V, E), where |V | = 2Nα, is defined
such that each genexi corresponds to two nodes, i and −i, and the set of directed
edges is: E(GP

α) = {(u, v) | u ∈ Pα(v)}. Similarly, in digraph GS
α = (V, E),

|V | = 2Nα, and: E(GS
α) = {(u, v) | v ∈ Sα(u)}. Here, (u, v) denotes an arc

directed from u to v. Note that an edge in GP
α is from the predecessor, while an

edge in GS
α is to the successor. For instance, let g have the chromosome (1 -4 -3

5.1 2). Then GP
g and GS

g are as shown in Fig.3(A) and (B), respectively.
We intersect GP

α and GS
α, producing the intersection graph G = GP

α ∩ GS
α,

retaining edges that are not connecting to either of the endpoints, ΦA and ΦZ .
Then special care is taken to add endpoint edges, basically retaining all the
endpoint edges that appear in both GP

α and GS
α. All three graphs (predecessor,

successor, and intersection) have the same set of 2Nα nodes. G’s edges are:

E(G) =
{
E(GP

α) ∩ E(GS
α)

}
∪

{
(ΦA, v) | (ΦA, v) ∈ E(GP

α)
}

∪
{
(u, ΦZ) | (u, ΦZ) ∈ E(GS

α)
}

(1)

128 J. Ma et al.

1 4 3 5.1 2

-1 -4 -3 -5.1 -2

0

1 4 3 5.1 2

-1 -4 -3 -5.1 -2

0

(A) (B)

Fig. 3. (A) A predecessor graph GP
g ; (B) A successor graph GS

g

The edges of the intersection graph G indicate consistent predecessor and succes-
sor relationships that are supported by T, Ti and the modern genomes. However,
they do not necessarily indicate a unique adjacency relationship for a particular
gene. Three potential ambiguous cases might occur in the intersection graph, as
depicted for node i in Figure 4. In (a), i has several incoming edges. In (b), i
has several outgoing edges. In (c), i forms a cycle with j, where each node j
satisfies indegree(j) = outdegree(j) = 1. (If a more complex cycle exists, then
some node falls in either case (a) or case (b)).

j

k

i

j

k

i

ji

(a) (b) (c)

Fig. 4. Three potential ambiguous cases in the intersection graph G

If none of these ambiguous cases is present, the intersection graph itself forms
the set of paths that covers all the nodes. In this case, the CARs can be directly
defined from this graph as discussed below. When ambiguity exists, we need to
resolve the ambiguity and choose appropriate directed edges to form CARs. We
assign a weight to each of the directed edges in the remaining graph using the
following approach.

For an directed edge (i, j), if outdegree(i) = 1 and indegree(j) = 1 (in other
words, it is not among one of the incoming edges of case (a) nor it is among one of
the outgoing edges of case (b)), we set wα(i, j) = 1. Otherwise, the corresponding
weight wα(i, j) is determined recursively by:

wα(i, j) =
d(α, τ) · wϕ(i, j) + d(α, ϕ) · wτ (i, j)

d(α, τ) + d(α, ϕ)
(2)

where d(α, τ) and d(α, ϕ) are the branch lengths to the left child and right
child; wτ (i, j) and wϕ(i, j) are the edge weights on left child and right child,
respectively. On a leaf genome, if (i, j) is present in the predecessor graph, we
set w(i, j) = 1, otherwise w(i, j) = 0. This kind of edge weight can also be
determined by a postorder traversal. Note that if an edge (i, j) is involved in

A Heuristic Algorithm for Reconstructing Ancestral Gene Orders 129

ambiguous case (a) or (b), w(i, j) < 1. The underlying assumption of equation
2 is that rearrangement is more likely to happen on longer branches.

Our goal is to connect elements into the longest possible CARs that are con-
sistent with the observed data. The problem can be transformed into looking for
vertex-disjoint paths that cover all the nodes in the digraph G with the maxi-
mum weight. Here we also allow degenerate paths, where there is only one node.
The simplified version of this problem when all the edge weights are the same,
say 1, is equivalent to the Minimum Path Cover Problem, i.e., finding the mini-
mum number of vertex-disjoint paths covering all the nodes in the digraph. The
minimum path cover problem was proved to be NP-hard [18].

We use a greedy approach to achieve an approximate solution, given in the
algorithm of Find-Cars below. We first sort the edges by weight. Then the
greedy approach always tries to add the heaviest edge to the resulting path set.

Find-Cars(G)
1 Sort edges by weight in descending order.
2 Create a new graph C, V (C) = V (G) and E(C) = ∅
3 for each available (i, j) ∈ E(G), in order of edge weight
4 do if outdegree(i) = 0 and indegree(j) = 0
5 then Add edge (i, j) and (−j, −i) to E(C)
6 Update outdegree(i) and indegree(j) in C
7 Break cycles in C.
8 return C.

Note that the simple greedy process doesn’t guarantee there will be no cycle in
the path set. We need a final step (line 7) to detect and break the cycles. We use
the depth-first-search algorithm to detect cycles in graph G. In fact, we can prove
that if there is a cycle, the weight of each edge in that cycle is 1. Therefore, we can
simply discard an arbitrary edge to break the cycle (In a variant where circular
chromosomes are considered, then cycles would be allowed). The remaining paths
in G correspond to the CARs we want to reconstruct.

When adding edges into an existing path, particular care is needed to avoid
putting j and −j in the same CAR. In addition, we add both (i, j) and its
symmetric version, (−j, −i). For each path found by this approach, a symmetric
path in the opposite orientation is also found, since we have nodes for both i
and −i. The two paths correspond to the same CAR, and eventually we choose
one of them.

2.5 Summary

In outline, the whole Infer-Cars-With-Dup algorithm can be described as
follows, where α is the target ancestor, and G denotes the collection of modern
genomes.

130 J. Ma et al.

Infer-Cars-With-Dup(α)
1 Construct T and Tx (for each gene family x)
2 C ← empty set of CARs
3 R ← root(T)
4 Initialize Pg(i) and Sg(i) for each gene i in every g in G

5 for each gene family i
6 do Get-Predecessor-Successor-Bottom-Up(root(Ti))
7 Adjust-Ancestor-Top-Down(R, α)
8 Get graph G according to Equation (1)
9 C ←Find-CARs(G)

10 return C

3 Results

3.1 Simulation Results

We used extensive simulations to test and validate our analysis. The simulator
starts with a hypothetical ‘ancestor’ genome which evolves into the extant species
through speciation, inversion, translocation, fusion, fission, insertion, deletion,
and duplication. When an operation is applied, the breakpoint is chosen uni-
formly at random from the set of used or unused breakpoints on this chromo-
some, depending on the breakpoint reuse ratio. The length of the operation is
also picked uniformly at random within the specified distance from the first
breakpoint.

We tuned the weights of these operations in order to generate simulated
data that makes more biological sense specifically for placental mammalian
genomes. The ancestor genome was assigned around 5,000 genes. The param-
eters or weights of the large scale operations were tuned such that the extant
species had around the same number of genes. The breakpoint reuse ratio was
kept around 8%-10% and each of the extant species had 5%–10% duplicated
genes. We simulated 50 datasets using the phylogenetic tree:

((((human,chimp),rhesus),(mouse,rat)),dog).
On average, the ratio of breakpoint reuse is 9.98%, the ratio of duplicated
genes in each extant species is 8.12% (rhesus), 7.52% (human), 7.26% (chimp),
7.12% (mouse), 7.85% (rat), and 7.23% (dog), respectively. Also, rearrangements
are distributed as 82.33% inversions, 9.40% translocations, 3.86% fusions, and
4.40% fissions. In all the duplication events, 30.40% are tandem duplications and
69.60% are segmental duplications.

We ran our reconstruction program for inferring CARs on each dataset (avg.
running time 14.62min) and compared the predicted adjacencies with the known
(simulated) ones. Our target ancestor was primate-rodent ancestor and dog
was treated as outgroup. For determining the success rate, we considered only
the effective ancestral adjacencies (˜59% of all ancestral adjacencies) that were
broken in at least one lineage in the subtree rooted by primate-rodent ances-
tor, since the unbroken adjacencies will be found by essentially any procedure.

A Heuristic Algorithm for Reconstructing Ancestral Gene Orders 131

The frequency of correctly predicted adjacencies was 99.46% (SD=0.43%) for
the primate-rodent ancestor. The reconstruction accuracy of human-rhesus an-
cestor and mouse-rat ancestor is 99.75% (SD=0.27%) and 99.72% (SD=0.25%)
respectively.

We did some additional experiments to see how the performance changes in
the primate-rodent ancestor if we change parameters in the simulation. We made
the effective ancestral adjacency vary by using different number of rearrangement
operations. Interestingly, the accuracy didn’t change much. For example, when
the effective ancestral adjacency is around 10%, the accuracy is 99.67%. When
the effective adjacency is around 70%, the accuracy is 99.45%. We think the
accuracy didn’t really depend on effective adjacency because we used six species
in this simulation. We also increased the breakpoint reuse ratio to around 40%
when the effective adjacency ratio is 70%, then the accuracy dropped to 96.83%.
We concluded from these preliminary experiments that when the number of
leaf genomes is reasonable, the reconstruction performance isn’t hurt much if
we increase the number of operations (as reflected in the effective adjacencies).
Instead, the performance will be suffered if we increase the breakpoint reuse ratio
to let one ancestral adjacency be broken independently in different lineages.

3.2 Application to Real Data

It has been shown that the unicellular eukaryote Paramecium tetraurelia, a
ciliate, which contains about 40,000 genes, is a result of at least three whole
genome duplication (WGD) with additional rearrangement operations [19]. In
that paper, the authors reconstructed the genome architectures of four ancestral
genomes, corresponding to the most recent WGD, the intermediary WGD, the
old WGD, and the ancient WGD. They used Best Reciprocal Hits to construct
a paralogon, which is a pair of paralogous blocks that could be recognized as
deriving from a common ancestral region. Then paralogons were merged into
single ancestral blocks and the process was iterated until reaching the ancient
WGD. However, they didn’t intend to figure out the gene orders in each ancestral
block. When a paralogon was constructed, the detailed order and orientation of
genes inside the block were ignored.

All 39,642 genes form 22,635 gene families (including 11,740 single-gene fam-
ilies), which have been scattered on 676 scaffolds in the present day genome.
We tested our algorithm by reconstructing all WGDs except the ancient WGD.
We used the gene order in modern Paramecium tetraurelia and the gene trees
from [19]. The reconciled tree contains one leaf genome, which is the modern
genome, as well as ancestral nodes representing duplication events. We built the
augmented gene trees accordingly.

Many genes do not have paralogous genes in the paralogons for a particular
ancestral genome. If we include all the gene families in the reconstruction, the
input data would be very noisy and the resulting CARs would be too fragmented
due to the fact that we only have one leaf genome. For example, if we include
all the genes, there are 1,937 reconstructed CARs in the old WGD. Therefore,
when we were reconstructing CARs in a certain target genome, we did some

132 J. Ma et al.

Table 1. Number of CARs we reconstructed in three target ancestral genomes

target ancestor genes we
included

anc genes
with paralog
(from [19])

gene families
we used

predicted
CARs

anc blocks in
[19]

Old WGD 2,981 1,530 559 57 43
Intermediary

WGD
11,620 7,996 3,770 144 81

Recent WGD 25,708 24,052 9,951 228 131

preprocessing to only retain genes that have paralogous genes derived from more
ancient duplications. Additional genes were also added if their paralogs (from
this duplication) were retained in the leaf genome.

For all three genomes, the number of CARs reconstructed by us is greater than
the number of ancestral blocks reported in [19] using the paralogon method to
construct ancestral blocks. There are two reasons for this: (1) The authors of
[19] ignored the gene orders while we take order andorientation into account
when inferring CARs. (2) We used more genes in the reconstruction than just
the ancestral genes with paralogs, which were essentially used as anchors when
building paralogons.

Since paper [19] didn’t reconstruct the ancestral gene adjacencies, we couldn’t
compare our prediction with theirs in detail. Preliminary comparison showed
that our prediction has basically and more detailed refinement than the result
from [19]. Also, recent studies on genome halving problem [20,21,22,23] might
be particularly useful and interesting to be applied to the Paramecium genome.
As further ciliate genomes become available, we plan to further investigate the
changes of gene orders between different WGDs, using additional outgroup in-
formation from closely related species to pick up more adjacencies we couldn’t
reconstruct now, which will help to determine which methods of reconstructing
ancestral architecture are best, and might shed more light on the evolution of
the ciliate Paramecium tetraurelia.

4 Discussion

In this paper, we extend the method in [8] to reconstruct ancestral gene orders
with duplications. We have a simplifying assumption that all the distances in
the gene trees are perfect, which makes it easy to reconcile gene trees to the
species tree. In reality, we usually have gene trees with approximate distances.
Therefore, a more robust reconciliation method is needed, e.g. [24] and [25]. This
is a key area for further work.

Our future work will also focus on incorporating the ability to reconstruct
evolutionary history with large-scale operations, instead of just figuring out the
gene orders. Although solving the median problem is algorithmically challenging,
it is completely feasible to provide a plausible history of rearrangements and

A Heuristic Algorithm for Reconstructing Ancestral Gene Orders 133

duplications on each branch in the phylogeny when the descendant genome and
the ancestor genome have been both predicted.

Our simulation on large-scale mammalian genome evolution looks promising.
However, a number of challenges remain before the genome structure of mam-
malian ancestors can be accurately predicted in terms of rearrangements and
duplications, among which the most difficult would be partitioning the genomes
and accurately dating the duplication events.

Acknowledgement

We thank Olivier Jaillon at Centre National de Sequencage in France for pro-
viding data of ciliate Paramecium tetraurelia.

References

1. Caprara, A.: Formulations and hardness of multiple sorting by reversals. RE-
COMB, 84–94 (1999)

2. Pe’er, I., Shamir, R.: The median problems for breakpoints are NP-complete. Elec-
tronic Colloquium on Computational Complexity (ECCC), 5(71) (1998)

3. Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phy-
logeny. J. Comput. Biol. 5(3), 555–570 (1998)

4. Moret, B.M.E., Wyman, S.K., Bader, D.A., Warnow, T., Yan, M.: A new impl-
mentation and detailed study of breakpoint analysis. PSB, 583–594 (2001)

5. Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in
the ancestral species. Genome Res. 12(1), 26–36 (2002)

6. Froenicke, L., Caldes, M.G., Graphodatsky, A., Muller, S., Lyons, L.A., Robinson,
T.J., Volleth, M., Yang, F., Wienberg, J.: Are molecular cytogenetics and bioin-
formatics suggesting diverging models of ancestral mammalian genomes? Genome
Res. Genome Res. 16(3), 306–310 (2006)

7. Bourque, G., Tesler, G., Pevzner, P.A.: The convergence of cytogenetics
and rearrangement-based models for ancestral genome reconstruction. Genome
Res. 16(3), 311–313 (2006)

8. Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette,
M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral
genome. Genome Res. 16(12), 1557–1565 (2006)

9. Fitch, W.M.: Toward defining the course of evolution: minimum change for a spe-
cific tree topology. Syst. Zool. 20, 406–416 (1971)

10. Rocchi, M., Archidiacono, N., Stanyon, R.: Ancestral genomes reconstruction: An
integrated, multi-disciplinary approach is needed. Genome Res. 16(12), 1441–1444
(2006)

11. Eichler, E.E., Sankoff, D.: Structural dynamics of eukaryotic chromosome evolu-
tion. Science 301(5634), 793–797 (2003)

12. Sankoff, D.: Genome rearrangement with gene families. Bioinformatics 15(11), 909–
917 (1999)

13. Sankoff, D., El-Mabrouk, N.: Duplication, rearrangement and reconciliation. In:
Sankoff, D., Nadeau, J.H. (eds.) Comparative genomics: Empirical and analytical
approaches to gene order dynamics, map alignment and the evolution of gene
families, pp. 537–550. Kluwer Academic Publishers, Dordrecht (2000)

134 J. Ma et al.

14. Marron, M., Swenson, K.M., Moret, B.M.E.: Genomic distances under deletions
and insertions. Theor. Comput. Sci. 325(3), 347–360 (2004)

15. Page, R.D.M., Charleston, M.A.: From gene to organismal phylogeny: reconciled
trees and the gene tree/species tree problem. Mol. Phylogenet. Evol. 7(2), 231–240
(1997)

16. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.:
Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by
cladograms constructed from Globin Sequences. Syst. Zool. 28(2), 132–163 (1979)

17. Guigo, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phy-
logeny. Mol. Phylogenet. Evol. 6(2), 189–213 (1996)

18. Boesch, F.T., Gimpel, J.F.: Covering points of a digraph with point-disjoint paths
and its application to code optimization. J. ACM. 24(2), 192–198 (1977)

19. Aury, J.M., Jaillon, O., Duret, L., Noel, B., Jubin, C., Porcel, B.M., Ségurens,
B., Daubin, V., Anthouard, V., Aiach, N., et al.: Global trends of whole-genome
duplications revealed by the ciliate Paramecium tetraurelia. Nature 444, 171–178
(2006)

20. Seoighe, C., Wolfe, K.H.: Extent of genomic rearrangement after genome duplica-
tion in yeast. PNAS 95(8), 4447–4452 (1998)

21. El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM J.
Comput. 32(3), 754–792 (2003)

22. Alekseyev, M.A., Pevzner, P.A.: Whole genome duplications and contracted break-
point graphs. SIAM J. Comput. 36(6), 1748–1763 (2007)

23. Zheng, C., Zhu, Q., Sankoff, D.: Genome halving with an outgroup. Evolutionary
Bioinformatics 2, 319–326 (2006)

24. Chen, K., Durand, D., Farach-Colton, M.: NOTUNG: a program for dating gene
duplications and optimizing gene family trees. J. Comput. Biol. 7(3-4), 429–447
(2000)

25. Bansal, M.S., Burleigh, J.G., Eulenstein, O., Wehe, A.: Heuristics for the gene-
duplication problem: A Θ(n) speed-up for the local search. RECOMB, pp. 238–252
(2007)

Appendix

We discuss in detail the algorithm for determining the reconciled tree and aug-
mented gene tree. Let S be a rooted species tree and A be an unrooted gene
tree. We assume that S has an infinitely long incoming edge leading into its root
to accommodate ancient duplications, if needed. A reconciliation of A with S
is a mapping φ from the nodes of A into the set of nodes and points along the
edges of S with the following properties: (1) Every leaf l of A maps to a leaf φ(l)
of S of the same species; (2) Each internal node a of A maps to a point φ(a) in
S that lies either at a node or at a point on an edge in S; and (3) The mapping
φ is isometric in the sense that for every leaf node l in A, the distance from a to
l in A is the same as the distance from φ(a) to φ(l) in S. When φ(a) is a node
in the species tree S, we say that a is a speciation node in A, and when φ(a) is
a point that lies along an edge in S we say that a is a duplication node in A and
we create a corresponding duplication node at φ(a) in S.

Any internal node x in the unrooted binary tree A will be connected to three
other nodes u, v, and w, defining three possible rooted and directed subtrees U ,

A Heuristic Algorithm for Reconstructing Ancestral Gene Orders 135

V , and W of A, respectively. If A is to be successfully reconciled with S, two
of these subtrees, say U and V , must map to directed subtrees of S in such a
way that φ(x) lies above φ(u) and φ(v). To define the complete reconciliation,
we proceed inductively, assuming that we have already reconciled subtrees U
and V of A, and extending this reconciliation to include x. Let d′1 and d′2 be the
distances in A from x to u and v to x, respectively. Let x̃ be the last common
ancestor of φ(u) and φ(v) in S. Let d1 and d2 be the distances in S from φ(u)
and φ(v) to x̃, respectively. We will have d = d′1 + d′2 − d1 − d2 ≥ 0. Then the
subtree of A rooted at x and containing U and V can be reconciled with S by
extending the reconciliation of its subtrees U and V by adding a point φ(x). The
point φ(x) must lie at a distance d/2 upstream from x̃ in S, along the unique
path in S leading into x̃. Such a point always exists in S because we have added
an infinitely long stem branch leading into the original root of S. If d = 0, then
φ(x) = x̃. It is clear that the distance from φ(x) to φ(l) for any leaf l in U
or V must be correct, since the distances from φ(u) and φ(v) are correct by
the inductive hypothesis, and the additional distance added from φ(u) or φ(v)
to φ(x) in the above construction is exactly the increment needed to keep the
distances correct.

So long as A has more than one node, the inductive construction terminates
with two adjacent nodes y and z that dominate all other nodes in A, in the sense
that both the subtree Y rooted at y and pointing away from z, and the subtree
Z rooted at z and pointing away from y, are reconciled into subtrees of S. Then
the final step is to determine the root of the gene tree. Now let d be the distance
between y and z in A. Let r̃ be the last common ancestor of φ(y) and φ(z) in S.
Let d1 and d2 be the distances in S from φ(y) and φ(z) to r̃, respectively. We
define the root r of the gene tree A as the point at distance (d+ d1 − d2)/2 from
y and (d + d2 − d1)/2 from z along the edge connecting y and z, and φ(r) as
the corresponding point at distance (d − d1 − d2)/2 upstream from r̃ in S. This
completes the reconciliation.

We construct the reconciled tree by repeating the above procedure for each
gene tree. Each reconciliation adds new duplication nodes to S until the final
reconciled tree T is built.

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 136–148, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Reconstructing an Inversion History in the Anopheles
Gambiae Complex

Ai Xia, Maria V. Sharakhova, and Igor V. Sharakhov

Department of Entomology, Virginia Tech, Blacksburg, VA 24061, USA
igor@vt.edu

Abstract. The phylogenetic relationships among the members of species
complexes can be inferred from the distribution of fixed inversions if outgroup
arrangements are known. The Anopheles gambiae complex consists of seven
African mosquito species that can be differentiated based on ten fixed
inversions. However, the phylogenetic relationships among the members remain
unclear. This paper demonstrates that physical maps of the outgroup species A.
funestus and A. stephensi can be used for determining ancestral chromosome
arrangements in the A. gambiae complex. Gene order comparisons have been
performed using the Multiple Genome Rearrangements (MGR) and Sorting
Permutation by Reversals and block-INterchanGes (SPRING) programs. The
analysis has identified the chromosomal arrangements which are likely to be the
ancestral in the complex.

Keywords: Anopheles gambiae complex, chromosome rearrangement,
phylogeny.

1 Introduction

Anopheles gambiae, the most important malaria vector in the world, belongs to a
complex of seven sibling species, the group of closely related species, which cannot
be distinguished morphologically but can be differentiated based on chromosomal
arrangements and molecular markers. Most species of the A. gambiae complex are of
less or no importance as malaria vectors. Identification of the member that is the
closest to the ancestral species for the A. gambiae complex will provide a framework
for determining the evolutionary genomic changes associated with the increased
ability to transmit a malaria parasite.

The karyotype of malaria mosquitoes consists of 3 pairs of chromosomes: one pair
of acrocentric sex chromosomes X (X and Y in males), and two pairs of
submetacentric autosomes 2 and 3. There are ten fixed inversions in the A. gambiae
complex. A. quadriannulatus A and A. quadriannulatus B have the standard
(presumably ancestral) chromosomal arrangements [1]. The notation for the standard
karyotype is X+, 2R+, 2L+, 3R+, 3L+. The other members of the complex have fixed
inversions on various chromosomal arms. The 2La inversion (the inverted
arrangement on the left arm of the chromosome 2) is fixed in A. arabiensis and A.
merus, but is polymorphic in A. gambiae [1, 2]. A. merus and A. gambiae share the
Xag inversion, while A. arabiensis has the Xbcd inversion. Additionally, A. merus

 Reconstructing an Inversion History in the Anopheles Gambiae Complex 137

and A. gambiae differ from each other by two overlapping inversions on 2R, “o” and
“p”. A. bwambae and A. melas share the 3La arrangement while A. melas carries a
2Rm inversion [1].

The reconstruction of an inversion history is based on two principles: monophyly
and parsimony. For a long time, the standard chromosomal arrangements of A.
quadriannulatus (homosequential species A and B) had been considered the closest to
the ancestral species because of their central position relative to other species in the
complex [1, 3] (Fig. 1A). However later A. arabiensis, was assumed to be the closest
to the ancestral species, in part because it has a fixed 2La inversion cytologically
identified in two members of the Anopheles subpictus complex, i.e., outside of the A.
gambiae complex [4] (Fig. 1B). Recently, the analysis of the inversion breakpoint
structure revealed that A. arabiensis, A. gambiae, and A. merus share the same 2La
arrangement. Moreover, the molecular features of the breakpoints strongly suggested
that this arrangement is ancestral [2]. It has been proposed that a possible ancestor of
the complex, A. arabiensis, may have originated in the Middle East and reached
Africa through the arid Arabian peninsula [4]. However, because 2La is present in A.
arabiensis, A. gambiae, and A. merus, any of these three species can now be
considered the closest to the ancestral species (Fig. 1).

Additional studies are required in order to reconstruct the phylogenetic
relationships among the members of the A. gambiae complex. Specifically, the
relationships of A. quadriannulatus, A. arabiensis, A. gambiae, and A. merus among
each other and with the ancestral species to the complex remain unresolved. One way
to resolve these phylogenetic relationships is to determine ancestry of inversion
arrangements on the chromosomes X, 2L, and 2R. A reconstruction of the A. gambiae
complex phylogeny using polytene chromosome maps of outgroup species has been
attempted [5]. Although, the sister group relationships A. bwambae + A. melas and A.
gambiae + A. merus have been confirmed, the identification of the ancestral
arrangements have failed because a cytogenetic map provides insufficient information
on gene order.

This paper determines ancestry of the gene order arrangements of two
chromosomal arms in the A. gambiae complex using physical maps of the outgroup
species A. funestus [6, 7] and A. stephensi (developed in this study). Thirty six probes
have been used for development of physical maps for the A. stephensi 2R and 3L
chromosomes corresponding to the 2R and 2L arms of A. gambiae and to the 2R and
3R arms of A. funestus. The three species belong to different series within the
subgenus Cellia: Pyretophorus (A. gambiae), Myzomyia (A. funestus), and Neocellia
(A. stephensi) [8]. The A. gambiae and A. funestus lineages diverged from a common
ancestor at least 36 million years ago [9]. A. gambiae is more closely related to A.
stephensi than to A. funestus [10, 11]. In this study, we have used the Multiple
Genome Rearrangements (MGR) [12] and Sorting Permutation by Reversals and
block-INterchanGes (SPRING) [13] programs to calculate inversion distances among
the species. We have confirmed the ancestral state of the 2La arrangement and have
shown that the 2Rop arrangement is more likely to be ancestral in the complex than
the 2R+ arrangement.

138 A. Xia, M. V. Sharakhova, and I. V. Sharakhov

Fig. 1. The hypothetical phylogenetic trees of the A. gambiae complex based on the central
position of the A. quadriannulatus chromosomal arrangements in the complex (A) and based
on the ancestry of the 2La arrangement (B). The known chromosomal arrangements that
support these trees are shown. The question mark indicates that an outgroup species that
supports this three is not known.

2 Materials and Methods

Mosquito Strain and Chromosome Preparation. The Indian Wild Type strain of A.
stephensi, which is a standard laboratory strain [14, 15], was used in this study.
Ovaries were extracted from half-gravid females and preserved in Carnoy's fixative

solution (3 ethanol: 1 glacial acetic acid by volume). Then they were fixed for 24
hours at room temperature and dissected in 50% propionic acid. A cover slide was

A

B

 Reconstructing an Inversion History in the Anopheles Gambiae Complex 139

placed on the follicles and pressed to extrude the cells. The banding pattern of
polytene chromosomes was examined using an Olympus phase-contrast microscope
(x10 objective). Slides with good chromosomal preparations were dipped in liquid
nitrogen, then the cover slips were removed and slides were dehydrated in 50%, 70%,
90%, and 100% ethanol.

Probe Preparation and Fluorescent In Situ Hybridization. Thirty six conserved A.
funestus and A. gambiae cDNA clones, as well as A. gambiae BAC clones (Table 1),
were mapped to A. stephensi polytene chromosomes 2R and 3L using FISH
(Fluorescent In Situ Hybridization). Development of physical maps for other
chromosomes is in progress. The A. gambiae cDNAs of A.Gam.ad.cDNA1 and
A.Gam.ad.cDNA.blood1 libraries [16] as well as the A. gambiae BAC clones of
NotreDame1 [16] and ND-TAM [17] libraries were obtained from the Malaria
Research and Reference Reagent Resource Center (MR4) (www.mr4.org). The A.
funestus cDNAs derived from the A. funestus SMART Library [6]. Recombinant
cDNA and BAC clones were isolated using a Sigma Kit (Sigma). Genomic inserts
from the SMART cDNA library were PCR amplified using T3/T7 or Amplimer
primers in following conditions: 95°C for 5 min; 25 cycles of 94°C for 30 s, 70°C for
2 min,68°C for 3 min with the Amplimer primer and 95°C for 5 min; and 25 cycles of
94°C for 30 s, 50°C for 30 min, 72°C for 30s, 72°C for 5 min with the T3/T7 primers.
The DNA was labeled with Cy5-AP3-dUTP (GE Healthcare UK Ltd,
Buckinghamshire, England) by Random Primers DNA Labeling System (Invitrogen
Corporation, Carlsbad, CA, USA) or the nick translation kit (Amersham, Bioscience,
Little Chalfont Buckinghamshire).

DNA probes were hybridized to the chromosomes at 39°C overnight in
hybridization solution (Invitrogen Corporation, Carlsbad, CA, USA). Then, the
chromosomes were washed in 0.2XSSC (Saline-Sodium Citrate: 0.03M Sodium
Chloride, 0.003M Sodium Citrate), counterstained with YOYO-1, and mounted in
DABCO. Fluorescent signals were detected and recorded using a Zeiss LSM 510
Laser Scanning Microscope (Carl Zeiss MicroImaging, Inc., Thornwood, NY, USA).
Localization of a signal was accomplished using a standard cytogenetic map for A.
stephensi [18]. No variation in signal localization was detected among all the nuclei
examined for a given probe.

Computational Methods and Analysis. Analysis included 36 probes uniquely
located on the A. stephensi and A. funestus chromosomes [6, 7]. Locations of the
A. funestus and A. stephensi sequences in the A. gambiae genome were determined
by BLASTN with default parameters using the VectorBase website (http:/
/www.vectorbase.org/Tools/BLAST/#). Because these lineages diverged at least 36
million years ago [9] we considered only hits with e-values less than e-20 and
alignments longer than 100 nt for ESTs and with e-values less than e-5 and alignments
longer than 40 nt for microsatellite containing noncoding sequences. Chromosomal
locations of the A. gambiae BAC clones were found using the search option on the
VectorBase website (http://www.vectorbase.org/Search/Keyword/).

The calculation of inversion distances among species of the A. gambiae complex,
as well as those for A. funestus and A. stephensi were performed using MGR and
SPRING programs. The Multiple Genome Rearrangements (MGR) program is

140 A. Xia, M. V. Sharakhova, and I. V. Sharakhov

available at www.cs.ucsd.edu/groups/bioinformatics/MGR. This program implements
an algorithm which seeks a tree that minimizes the sum of the rearrangements over all
the edges of the tree [12]. The Sorting Permutation by Reversals and block-
INterchanGes (SPRING) program is available at http:// algorithm.cs.nthu.edu.tw/
tools/SPRING/index.php. SPRING computes both the breakpoint and rearrangement
distances between any pair of two chromosomes [13]. It also shows phylogenetic trees
that are reconstructed based on the rearrangement and breakpoint distance matrixes.
The algorithms of MRG and SPRING are different. MRG uses heuristic strategies to
reconstruct a phylogenetic tree of input species. SPRING uses the Neighbor-Joining
method to reconstruct a tree instead of a heuristic method. We have chosen these two
methods for our analysis because they use gene order information as opposed to
nucleotide sequences.

3 Results

Inversion Distances in the A. gambiae Complex. There are 10 fixed inversions in
the A. gambiae complex [1]. We used information on positions of the inversion
breakpoints available from Coluzzi et al. [1] to identify an order of 30 cytological
markers in all seven species. These markers are the patterns of chromosomal bands
and interbands associated with each breakpoint. We were able to determine the sign
of these markers based on the banding pattern. The two outgroups are not present here
because not all the A. stephensi and A. funestus chromosomal arms have physical
maps of sufficient density. The following gene orders were entered into the MGR and
SPRING programs:

>A. gambiae 2R+ 2La 3L+ Xag
1 2 3 4 5 6 7 8 9 10 11 12 $
13 14 $
15 16 $
-28 -27 -26 -25 -24 -23 -22 -21 -20 -19 17 18 29 30 $
>A. arabiensis 2R+ 2La 3L+ Xbcd
1 2 3 4 5 6 7 8 9 10 11 12 $
13 14 $
15 16 $
17 18 19 20 -26 -25 -30 -29 -28 -27 21 22 -24 -23 $
>A. merus 2Rop 2La 3L+ Xag
1 -7 -6 -5 -4 -9 -8 2 3 10 11 12 $
13 14 $
15 16 $
-28 -27 -26 -25 -24 -23 -22 -21 -20 -19 17 18 29 30 $
>A. melas 2Rm 2L+ 3La X+
1 2 3 4 5 -11 -10 -9 -8 -7 -6 12 $
14 -13 $
16 -15 $
17 18 19 20 21 22 23 24 25 26 27 28 29 30 $
>A. quadriannulatus (species A and B) 2R+ 2L+ 3L+ X+

 Reconstructing an Inversion History in the Anopheles Gambiae Complex 141

1 2 3 4 5 6 7 8 9 10 11 12 $
14 -13 $
15 16 $
17 18 19 20 21 22 23 24 25 26 27 28 29 30 $
>A. bwambae 2R+ 2L+ 3La X+
1 2 3 4 5 6 7 8 9 10 11 12 $
14 -13 $
16 -15 $
17 18 19 20 21 22 23 24 25 26 27 28 29 30 $

Both MGR and SPRING programs recovered all 10 inversions and identified
inversion distances among all species correctly. An unrooted tree produced by MGR
can serve as a working hypothesis for determining phylogenetic relations in the
complex (Fig. 2).

 +-A. bwambae
 +---1-----A6
 | (3La) +---1-----A. melas
 | (2Rm)
 | +---------2----------A. merus
 | +--------2----------A7 (2Rop)
 | +---1-----A8 (Xag) +-A. gambiae
 | | (2La) |
 +-A9 +--------------3---------------A. arabiensis
 | (Xbcd)
 +-A. quadriannulatus A and B

Fig. 2. An unrooted tree of the A. gambiae complex recovered by MGR program. The number
of rearrangements that occurred on each edge is shown. The names of fixed inversions are
shown in parentheses.

Physical Maps for the A. stephensi Chromosomes. Table 1 shows a list of DNA
probes used for the physical mapping of 2R and 3L chromosomes of A. stephensi.
Also, it includes the probes mapped to A. funestus chromosomes previously [6, 7].
These data reveal the feasibility of interspecific in situ hybridization with the A.
stephensi chromosomes and support the cytological observations about the whole arm
translocations in subgenus Cellia [8]. Accordingly, chromosomes 2R are homologous
across all three species. The 2L arm of A. gambiae corresponds to the 3R of A.
funestus and the 3L of A. stephensi.

The same cDNA markers from the A. funestus SMART library were hybridized to
chromosomes of both species. In some cases, A. gambiae cDNA and BAC clones, that
contain sequences homologous to A. funestus cDNAs, were mapped to A. stephensi
chromosomes. Resolution of the physical maps for A. stephensi chromosomes was 2.8
Mb for 2R and 3.5 Mb for 3L.

142 A. Xia, M. V. Sharakhova, and I. V. Sharakhov

Table 1. Comparative cytological positions of DNA probes mapped to chromosomes in A.
gambiae, A. funestus, and A. stephensi. The asterisk (*) indicates the major BLASTN hit in A.
gambiae.

Probes on 2R and 2L of A. gambiae Chromosomal location

 Probe Accession e-value A. gambiae A. funestus A. stephensi
21_F03 BU038956 1e-23 2R:7A 2R:7B 1
04L11 AL141975 2R:7A 2R:7A

2 01_H04 BU038873 1e-165 2R:7B 2R:7A 2R:7B

3 21_F12 BU038958 2e-69 2R:8A 2R:12D 2R:13A

36_B06 BU038996 3e-80 2R:8D 2R:8E 4

105H10 BH368219 2R:8D 2R:9C

5 12_G10 BU038913 1e-105 2R:8E 2R:15C 2R:8A

 AFND5 AF171035 3e-18 2R:9B 2R:15B 6
25P09 AL153306 2R:9B 2R:10D

 FUN O AY116019 3e-05 2R:9C 2R:18A 7
11A13 AL145719 2R:9C 2R:14B

8 11_D03 BU038903 1e-60 2R:10A 2R:9A 2R:10A

9 04_D06 BU038877 6e-35 2R:11A 2R:10C 2R:16AB

10 08_E06 BU038895 4e-61 2R:11C 2R:16A 2R:10D

11 25_E09 BU038972 3e-83 2R:12B 2R:12B 2R:18B

 13_F11 BU038919 6e-57 2R:12B 2R:12B 12
129M18 BH377340 2R:12B 2R:18B
 15_F10 BU038925 9e-65 2R:12B 2R:12B 13

196004496
26240

BM655548 1e-136 2R:12B 2R:18B

14 06_B01 BU038882 1e-90 2R:12D 2R:14D 2R:9A

 03_D09 BU038874 5e-27 2R:13E 2R:17C 15
31M01 AL611707 2R:13E 2R:8C

16 12_G11 BU038914 3e-40 2R:15B 2R:18C 2R:14C

17 12_H09 BU038915 5e-82 2R:15D 2R:18D 2R:11C

29_F03 BU038988 5e-48 2R:15D 2R:11B 18
169F11 BH369697 2R:15D 2R:19A

19 11_E07 BU038905 1e-131 2R:16A 2R:14C 2R:19A

13_C03 BU038918 3e-55 2R:17C 2R:13C 20
08O05 AL144514 2R:17A

21 18_D12 BU038940 7e-71 2R:18C 2R:14B 2R:12C

22 11_B04 BU038900 1e-132 2R:19C 2R:19C 2R:19BC

28_C07 BU038985 4e-67 2L:20C 3R:35C
23

101C3 BH388218 2L:20C 3L:38B
04_D07 BU038878 8e-30 2L:21A 3R:35A

24
02A19 AL140406 2L:21A 3L:39D

95_H01 BU039015 4e-27 2L:22D 3R:31D
25

27O10 AL154432 3L:42C
AFND19 AF171049 2e-62 2L:22F 3R:34A

26
131F22 BH390198 3L:44C

27 11_F09 BU038906 1e-100 2L:26B 3R:35F 3L:45C

28 09_C11 BU038897 1e-63 2L:26A 3R:36C 3L:43C

29 16_F07 BU038931
1e-129
4e-57

2L:25D-
26A*
2L:25A

3R:36E 3L:42A

30 21_E03 BU038955 2e-35 2L:24C 3R:35F

 Reconstructing an Inversion History in the Anopheles Gambiae Complex 143

Table 1. (continued)

140N16 BH384642 2L:24C 3L:39C

31 61_E02 BU039003 9e-86 2L:23D 3R:30C 3L:45A

36_A10 BU038993 8e-25 2L:23C 3R:35F
32

150F12 BH385494 2L:23C 3L:44A

66_E11 BU038987 1e-134 2L:23A 3R:33D
33 196004497

16320
BM606621 2L:23A 3L:40A

08_B09 BU038894 1e-48 2L:26D 3R:30C
34

04C08 AL607764 2L:26D 3L:45A

35 06_G08 BU038889 5e-56 2L:27A 3R:30C 3L:46D

36 18_G01 BU038941 7e-69 2L:28C 3R:29B 3L:46A

The Ancestral State of the 2La Arrangement. Traditionally, the 2La inversion was
considered to be derived from the 2L+ standard arrangement [1, 3]. This view was
questioned because of the presence of 2La arrangement in the Oriental A. subpictus
complex [4] and full-length genes and their pseudogene copies only at breakpoints of
the 2L+ arrangement [2]. To assume this breakpoint structure ancestral would require
the improbable generation of two pseudogene copies before rearrangement at distant
reciprocal locations on the 2L+ chromosome, followed by their exact excision during
generation of the inversion.

To confirm the ancestral gene order in the 2L arm, inversion distances were
calculated among the A. merus 2La arm, the A. quadriannulatus 2L+ arm, the A.
funestus 3R arm, and the A. stephensi 3L arm using 14 uniquely located probes. The
physical maps do not provide the signs of the DNA markers on the A. funestus and A.
stephensi chromosomes. The gene orders for these arms were as follows:

> A. quadriannulatus 2L+
1 2 3 4 5 6 7 8 9 10 11 12 13 14 $
> A. merus 2La
1 2 3 4 -11 -10 -9 -8 -7 -6 -5 12 13 14 $
> A. funestus 3R
7 6 8 5 10 1 2 4 11 3 9 12 13 14 $
> A. stephensi 3L
1 2 8 11 3 7 6 4 10 5 9 12 13 14 $

Figure 4 shows that the gene order of 2La, and not that of 2L+, was closer to gene
orders of A. funestus 3R and A. stephensi 3L. This result provides independent
evidence of the ancestral state of the 2La arrangement in A. gambiae. SPRING
produced the same tree based on rearrangements.

More conclusive evidence occurs based on the in situ hybridization of DNA probes
from the 2L+a proximal breakpoint of A. gambiae to the chromosomes of A.
stephensi. The 146D17 BAC clone spanning the 2L+ proximal breakpoint hybridized
to two locations, 40A and 44C, on the chromosome 3L of A. stephensi. The 131F22
BAC clone partly overlaps with 146D17, hybridized in only a single location, 44C
(Fig. 3).

144 A. Xia, M. V. Sharakhova, and I. V. Sharakhov

Fig. 3. Fluorescent in situ hybridization of 146D17 labeled with Cy5 (A, C) and 131F22 labeled
with Cy3 (B, D) performed on the chromosomes of A. stephensi. Arrows point at the
hybridization signals. A and B show the banding pattern of the chromosomes counterstained
with the fluorophore YOYO-1. C and D show fluorescence due to hybridization

 +-A. merus 2La

 +------------------------7--------------------------A4
 | +--1---A. quadriannulatus 2L+
 |
 | +---------3-----------A. stephensi 3L
 +-A5
 +-------------4---------------A. funestus 3R

Fig. 4. A tree recovered by MGR program. The number of rearrangements that occured on each
edge is shown.

Follow-up experiments involving BAC fragments derived from both sides of the
breakpoint yielded only single sites of hybridization for each fragment, either 40A or
44C (data not shown). These results indicate that the breakpoint structure of the 2L+
arrangement is not present in the outgroup species A. stephensi and, therefore, is not
likely to be ancestral. The derived nature of the 2L+ arrangement and the ancestral
status of 2La suggest that A. arabiensis, A. gambiae, or A. merus must be considered
the closest to the ancestral species.

 Reconstructing an Inversion History in the Anopheles Gambiae Complex 145

The Possible Ancestral State of the 2Rop Arrangement. A. merus and A. gambiae
share the Xag inversion, A. arabiensis has the Xbcd inversion, and the other members
of the complex have the “standard” X arrangement. Unfortunately, the physical maps
of A. funestus and A. stephensi provided insufficient markers to cover all five
inversions. Therefore, the ancestral state of X chromosome cannot be conclusively
determined.

 A. merus and A. gambiae differ from each other by two overlapping inversions on
2R: “o” and “p”. We used 22 uniquely located markers that were common for the A.
funestus and A. stephensi maps. The physical maps do not provide the signs of the
DNA markers on the A. funestus and A. stephensi chromosomes. The gene orders for
these arms were as follows:

>A. gambiae 2R+
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 $
>A. merus 2Rop
1 2 3 4 5 -14 -13 -12 -11 -10 -9 -8 -15 6 7 16 17 18 19 20 21 22 $
>A. funestus 2R
2 1 4 8 9 18 11 12 13 3 20 21 19 14 6 5 10 15 7 16 17 22 $
>A. stephensi 2R
1 2 5 15 14 4 8 10 6 17 21 3 7 16 9 20 11 12 13 18 19 22 $

The MGR and SPRING programs identified both inversions that separate A. merus
and A. gambiae and determined that the 2Rop typical for A. merus arrangement is
ancestral (Fig. 5).

 +-----------------------8-------------------------A. funestus 2R
 |
 | +--------------------------9----------------------------A. stephensi 2R
 +-A5
 | +-A. merus 2Rop
 +--------------------7---------------------A4
 +----2------A. gambiae 2R+

Fig. 5. An MGR phylogenetic tree based on gene orders on 2R arms

4 Conclusion

The analysis reported in this paper showed that physical maps of outgroup species can
be used for reconstructing phylogenies based on gene orders within species
complexes. No contradictions were found between A. gambiae complex phylogenies
when the A. stephensi or A. funestus physical maps were used as outgroups. Our
analysis confirmed the ancestral status of 2La postulated in previous studies [2, 4].
Moreover, the in situ hybridization of DNA probes from the 2L+a proximal
breakpoint of A. gambiae to the chromosomes of A. stephensi has provided conclusive
evidence for the ancestry of the 2La arrangement. The derived nature of the 2L+
inversion leads to a revised history of the A. gambiae complex in which A. arabiensis,

146 A. Xia, M. V. Sharakhova, and I. V. Sharakhov

A. gambiae, A. merus, and not A. quadriannulatus must be considered the closest to
the ancestral species (Fig. 1B).

The relatively high density of uniquely located markers on the 2R physical map
determined the ancestral status of 2Rop arrangement of A. merus. These results
suggest that the breakpoint structure of the 2Rop and not 2R+ arrangement is present
in outgroup species. It is possible to test this hypothesis by mapping DNA probes
from the 2Rop breakpoints of A. merus to the chromosomes of A. stephensi. If the
ancestral status of 2Rop is confirmed at the molecular level, A. merus must be
considered the closest to the ancestral species. This East African saltwater mosquito is
not a principal vector of human malaria. However, its important role in malaria
transmission in Madagascar has been documented [19]. A. merus differs from A.
gambiae, the most important malaria vector in the world, by only two fixed inversions
on 2R. Of eight polymorphic inversions described in A. gambiae s.s., seven occur on
chromosome 2R and one on 2L [1]. These inversions are associated with
epidemiologically important ecological adaptations, such as tolerance to aridity [1, 3].
Generation of many of these important inversions would have been impossible
without initial fixation of the 2R+ arrangement.

The X chromosome had the highest rate of inversion fixation in the complex. The
monophyletic origin of the Xag arrangement, common to A. merus and A. gambiae,
has been supported by the molecular analysis of DNA sequences from regions inside
Xag [20, 21]. A. arabiensis has the Xbcd arrangement. Marker densities on the X
chromosome physical maps for A. stephensi or A. funestus were insufficient to detect
all five inversions. Development of a higher resolution physical map for the A.
stephensi X chromosome will lead to the determination of the ancestral status among
X+, Xag, and Xbcd. Identification and characterization of the clones that contain
breakpoints for Xag, Xbcd, and 2Rop arrangements should provide detailed
information on the inversion history in the A. gambiae complex.

Acknowledgements. We thank Nora J. Besansky for providing the genomic inserts
from the A. funestus SMART cDNA library. The A. gambiae cDNAs of
A.Gam.ad.cDNA1 and A.Gam.ad.cDNA.blood1 libraries and the A. gambiae BAC
clones of NotreDame1 and ND-TAM libraries were obtained from the Malaria
Research and Reference Reagent Resource Center (MR4). We thank the reviewers for
suggestions to improve the manuscript and Ying Chig Lin for useful discussion on
MGR and SPRING programs. This study was supported by Agricultural Experimental
Station and Fralin Biotechnology Center at Virginia Tech.

References

1. Coluzzi, M., Sabatini, A., della Torre, A., Di Deco, M.A., Petrarca, V.: A polytene
chromosome analysis of the Anopheles gambiae species complex. Science 298, 1415–
1418 (2002)

2. Sharakhov, I.V., White, B.J., Sharakhova, M.V., Kayondo, J., Lobo, N.F., Santolamazza,
F., Della Torre, A., Simard, F., Collins, F.H., Besansky, N.J.: Breakpoint structure reveals
the unique origin of an interspecific chromosomal inversion (2La) in the Anopheles
gambiae complex. Proc. Natl. Acad. Sci. U S A 103, 6258–6262 (2006)

 Reconstructing an Inversion History in the Anopheles Gambiae Complex 147

3. Coluzzi, M., Sabatini, A., Petrarca, V., Di Deco, M.A.: Chromosomal differentiation and
adaptation to human environments in the Anopheles gambiae complex. Trans. R Soc.
Trop. Med. Hyg. 73, 483–497 (1979)

4. Ayala, F.J., Coluzzi, M.: Chromosome speciation: humans, Drosophila, and mosquitoes.
Proc. Natl. Acad. Sci. USA 1, 6535–6542 (2005)

5. Pape, T.: Cladistic analyses of mosquito chromosome data in Anopheles subgenus Cellia
(Diptera: Culicidae). In: Mosq. Syst., pp. 241–211 (1992)

6. Sharakhov, I.V., Serazin, A.C., Grushko, O.G., Dana, A., Lobo, N., Hillenmeyer, M.E.,
Westerman, R., Romero-Severson, J., Costantini, C., Sagnon, N., Collins, F.H., Besansky,
N.J.: Inversions and gene order shuffling in Anopheles gambiae and A funestus.
Science 298, 182–185 (2002)

7. Sharakhov, I., Braginets, O., Grushko, O., Cohuet, A., Guelbeogo, W.M., Boccolini, D.,
Weill, M., Costantini, C., Sagnon, N., Fontenille, D., Yan, G., Besansky, N.J.: A
microsatellite map of the African human malaria vector Anopheles funestus. J. Hered 95,
29–34 (2004)

8. Green, C., Hunt, R.: Interpretation of variation in ovarian polytene chromosomes of
Anopheles funestus Giles, A. parensis Gillies, and A. aruni? Genetica 51, 187–195 (1980)

9. Krzywinski, J., Grushko, O.G., Besansky, N.J.: Analysis of the complete mitochondrial
DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation
and a temporal dimension of mosquito evolution. Mol. Phylogenet Evol. 39, 417–423
(2006)

10. Harbach, R.E., Kitching, I.J.: Reconsideration of anopheline mosquito phylogeny (Diptera:
Culicidae: Anophelinae) based on morphological data. Systematics and Biodiversity 3,
345–374 (2005)

11. Marshall, J.C., Powell, J.R., Caccone, A.: Short report: Phylogenetic relationships of the
anthropophilic Plasmodium falciparum malaria vectors in Africa. Am. J. Trop. Med.
Hyg. 73, 749–752 (2005)

12. Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders in the
ancestral species. Genome Res. 12, 26–36 (2002)

13. Lin, Y.C., Lu, C.L., Liu, Y.C., Tang, C.Y.: SPRING: a tool for the analysis of genome
rearrangement using reversals and block-interchanges. Nucleic Acids Res. 34, W696–699
(2006)

14. Lim, J., Gowda, D.C., Krishnegowda, G., Luckhart, S.: Induction of nitric oxide synthase
in Anopheles stephensi by Plasmodium falciparum: mechanism of signaling and the role
of parasite glycosylphosphatidylinositols. Infect. Immun. 73, 2778–2789 (2005)

15. Luckhart, S., Rosenberg, R.: Gene structure and polymorphism of an invertebrate nitric
oxide synthase gene. Gene 232, 25–34 (1999)

16. Holt, R.A., Subramanian, G.M., Halpern, A., Sutton, G.G., Charlab, R., Nusskern, D.R.,
Wincker, P., Clark, A.G., Ribeiro, J.M., Wides, R., Salzberg, S.L., Loftus, B., Yandell, M.,
Majoros, W.H., Rusch, D.B., Lai, Z., Kraft, C.L., Abril, J.F., Anthouard, V., Arensburger,
P., Atkinson, P.W., Baden, H., de Berardinis, V., Baldwin, D., Benes, V., Biedler, J.,
Blass, C., Bolanos, R., Boscus, D., Barnstead, M., Cai, S., Center, A., Chaturverdi, K.,
Christophides, G.K., Chrystal, M.A., Clamp, M., Cravchik, A., Curwen, V., Dana, A.,
Delcher, A., Dew, I., Evans, C.A., Flanigan, M., Grundschober-Freimoser, A., Friedli, L.,
Gu, Z., Guan, P., Guigo, R., Hillenmeyer, M.E., Hladun, S.L., Hogan, J.R., Hong, Y.S.,
Hoover, J., Jaillon, O., Ke, Z., Kodira, C., Kokoza, E., Koutsos, A., Letunic, I., Levitsky,
A., Liang, Y., Lin, J.J., Lobo, N.F., Lopez, J.R., Malek, J.A., McIntosh, T.C., Meister, S.,
Miller, J., Mobarry, C., Mongin, E., Murphy, S.D., O’Brochta, D.A., Pfannkoch, C., Qi,
R., Regier, M.A., Remington, K., Shao, H., Sharakhova, M.V., Sitter, C.D., Shetty, J.,

148 A. Xia, M. V. Sharakhova, and I. V. Sharakhov

Smith, T.J., Strong, R., Sun, J., Thomasova, D., Ton, L.Q., Topalis, P., Tu, Z., Unger,
M.F., Walenz, B., Wang, A., Wang, J., Wang, M., Wang, X., Woodford, K.J., Wortman,
J.R., Wu, M., Yao, A., Zdobnov, E.M., Zhang, H., Zhao, Q., Zhao, S., Zhu, S.C.,
Zhimulev, I., Coluzzi, M., della Torre, A., Roth, C.W., Louis, C., Kalush, F., Mural, R.J.,
Myers, E.W., Adams, M.D., Smith, H.O., Broder, S., Gardner, M.J., Fraser, C.M., Birney,
E., Bork, P., Brey, P.T., Venter, J.C., Weissenbach, J., Kafatos, F.C., Collins, F.H.,
Hoffman, S.L.: The genome sequence of the malaria mosquito Anopheles gambiae.
Science 298, 129–149 (2002)

17. Krzywinski, J., Nusskern, D.R., Kern, M.K., Besansky, N.J.: Isolation and characterization
of Y chromosome sequences from the African malaria mosquito Anopheles gambiae.
Genetics 166, 1291–1302 (2004)

18. Sharakhova, M.V., Xia, A., McAlister, S.I., Sharakhov, I.V.: A standard cytogenetic
photomap for the mosquito Anopheles stephensi (Diptera: Culicidae): application for
physical mapping. J. Med. Entomol. 43, 861–866 (2006)

19. Tsy, J.M.P., Duchemin, J.B., Marrama, L., Rabarison, P., Le Goff, G., Rajaonarivelo, V.,
Robert, V.: Distribution of the species of the Anopheles gambiae complex and first
evidence of Anopheles merus as a malaria vector in Madagascar. Malar J. 2, 33 (2003)

20. Garcia, B.A., Caccone, A., Mathiopoulos, K.D., Powell, J.R.: Inversion monophyly in
African anopheline malaria vectors. Genetics 143, 1313–1320 (1996)

21. Besansky, N.J., Krzywinski, J., Lehmann, T., Simard, F., Kern, M., Mukabayire, O.,
Fontenille, D., Toure, Y.T., Sagnon, N.F.: Semipermeable species boundaries between
Anopheles gambiae and Anopheles arabiensis: evidence from multilocus DNA sequence
variation. Proc. Natl. Acad. Sci. USA 100, 10818–10823 (2003)

Recovering True Rearrangement Events on

Phylogenetic Trees

Hao Zhao and Guillaume Bourque

Genome Institute of Singapore, 138672, Republic of Singapore

Abstract. Given the gene-order of a set of contemporary genomes, the
problem of recovering the rearrangement scenario that best explains
these arrangements can be challenging even if the phylogeny of these
species is known. Most of the existing methods can identify an optimal
or near-optimal scenario in terms of parsimony but they cannot distin-
guish between reliable and putative events on the reconstructed tree. In
this paper, we propose an efficient method to infer partial rearrangement
scenarios consisting of only reliable ancestral events. Using simulations,
we show that the approach allows the recovery of actual events with high
sensitivity and specificity under both random and fragile rearrangement
models. Finally, we also apply the approach to two real data sets.

1 Introduction

In recent years, gene order data has been intensively used to study phylogenetic
trees since it provides a whole-genome view on evolution [18, 8, 6]. Because
some of the simplest formulations of the problem even with 3 genomes are NP-
hard [5], reconstruction algorithms have to rely on heuristics to recover a most
parsimonious scenario [13, 2, 11]. Nonetheless, this did not prevent applications
using the whole-genome of various vertebrate species [4, 14].

Gene-order phylogenetic reconstruction algorithms are typically evaluated
based on three criteria: 1) their ability to recover the correct tree topology,
2) the total number of rearrangements in the scenario recovered [13, 2] and 3)
the quality of the ancestral reconstructions [7, 3]. In the current work, we plan
to evaluate these reconstructions based on a different criterion: the accuracy of
the rearrangements in the recovered scenarios. To our knowledge, this has yet
to be systematically analyzed. The idea here is to shift the focus from trees and
ancestral reconstructions and study the quality of the inferred scenario them-
selves. We will only look for highly reliable (i.e. true) events as they are likely to
lead to new insights in our understanding of the underlying evolutionary mech-
anisms. Such an analysis has seldom been performed because multiple optimal
rearrangement paths frequently exist even between a pair of genomes [21]. Ini-
tially of course, this assessment will be performed on simulated data sets where
the accuracy can be assessed.

Although maximum likelihood-based methods are an appealing way to try to
achieve this goal, such probabilistic formulations have so far proven to be compu-
tationally prohibitive [20]. Moreover, the few developments in this area [12, 9] did
not aim to estimate the accuracy of the individual ancestral events either.

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 149–161, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

150 H. Zhao and G. Bourque

Our main contribution is a new approach called Efficient Method to Recover
Ancestral Events (EMRAE) that allows the inference, on a fixed phylogenetic tree,
of a partial rearrangement scenario consisting of only reliable events. As a first
step, the rearrangement operations that we consider are reversals and trans-
positions but the method is readily expandable to other types of events. The
approach relies on adjacencies shared by a significant fraction of the genomes in
a given subtree. The ability to model transpositions is one of the strengths of
EMRAE, since transpositions are typically harder to characterize even when only
2 genomes are considered [1, 23].

We compare EMRAE to two standard reconstruction tools: MGR [2] and GRAPPA
[13] and show that EMRAE achieves comparable sensitivity but significantly higher
specificity under both random and fragile models. Then, we apply our approach
to two real data sets: the Campanulaceae Chloroplast dataset [6] and a data set
consisting of 4 bacterial genomes in the Burkholderia family [10]. Finally, we will
present some potential extensions and future directions.

2 Basic Concepts

A genome G can be represented by a signed permutation g1 g2 . . . gn where each
integer gi (1 ≤ i ≤ n) corresponds to a unique gene or marker in G. The sign of
gi represents its orientation. An adjacency a(gi, gi+1) of G is an ordered pair of
integers gi gi+1 or its inverse −gi+1 −gi. Denote a ∈ G if a is an adjacency of
genome G. Two adjacencies overlap if they share a common gene. For instance,
a(1, 2) and a(−2, 3) overlap since they share gene 2. We view G = g1 g2 . . . gn

the same as its reverse −G = −gn −gn−1 . . .−g2 −g1.
For a given genome G = g1 g2 . . . gn, a reversal r(i, j), where i ≤ j, transforms

G into g1 g2 . . . −gj −gj−1 . . . −gi+1 −gi gj+1 . . . gn by reversing both the order
of gi gi+1 . . . gj−1 gj and the sign of each gene. A transposition t(i, j, k) on G,
where i ≤ j, exchanges the two segments gi . . . gj and gj+1 . . . gk if k ≥ j
or gk . . . gi−1 and gi . . . gj if k ≤ i. Finally, a phylogenetic tree T is a binary,
unrooted tree. The leaves of T represent contemporary species while the internal
nodes of T represent their ancestors.

3 Methods and Algorithms

The main idea of our approach is to identify shared adjacencies and to combine
them to trace back ancestral events. For example, take the phylogenetic tree
shown in Figure 1 with eight genomes (G1, G2, . . . , G8) and where A, B and C
represent ancestral nodes. We will now describe how to infer ancestral events on
an edge e = (A, B). Note that the removal of e from T partitions the genomes
into two subsets SA = {G1, G2, G3, G4} and SB = {G5, G6, G7, G8}.

Assume that A = 1 2 3 4 5 and there is only one reversal r(2, 4) on e which
transforms A into B = 1 −4 −3 −2 5. By comparing the adjacencies of A and B,
we observe that r changes two adjacencies in A, a1 = a(1, 2) and a2 = a(4, 5), and
leads to two new ones in B, b1 = a(1, −4) and b2 = a(−2, 5). Other adjacencies

Recovering True Rearrangement Events on Phylogenetic Trees 151

in A are left unchanged. We say that a1 and a2 are the counterparts of b1 and
b2 with respect to r and vice-versa. Assume that in a “perfect”scenario, a1 and
a2 are not disrupted by any additional rearrangement event on the paths from
A to every Gi ∈ SA and that b1 and b2 are not disrupted by any events on the
paths from B to every Gj ∈ SB . Then a1 and a2 are preserved in every genome
of SA, while neither of them can be found in a genome of SB. We call a1 and
a2 conserved adjacencies of SA. Similarly, b1 and b2 are conserved adjacencies
of SB. If we can identify the conserved adjacencies in SA and in SB then, in
a perfect scenario where these adjacencies are not reused, it will be trivial to
infer the rearrangements that occur. In the example above, we would know that
a(1, 2) and a(4, 5) were affected by a reversal on edge e.

G1 G2 G3

1 2 3 4 5

1 -4 -3 -2 5

r(2,4)

A

B

e

G4

G5 G6 G7 G8

C

Fig. 1. Inferring an event on edge e

G1 G2 G3

G5 G6

1 2 3 4 5 6 7 8

1 -4 -3 -2 5 6 7 8

r(2,4)

A

C

r(2,7)

B

1 -7 -6 -5 2 3 4 8

1 -7 -6 -5 2 3 4 8

e

el
er

1 2 3 4 5 6 7 8

1 -4 -3 -2 5 6 7 8

1 2 3 4 5 6 7 8

1 -7 -6 -5 2 3 4 8

Fig. 2. Refinement step on edge e

Formally, denote by CA(e, A) the sets of conserved adjacencies in SA for an
edge e = (A, B):

CA(e, A) = {a | a ∈ Gi, ∀Gi ∈ SA and a /∈ Gj , ∀Gj ∈ SB}.

Let CA(e, B) be defined similarly. For every edge e ∈ T , CA(e, A) and CA(e, B)
retain the information that will be used to infer ancestral events on the edge e.
We use the following Inference Rules:

– Reversal: Suppose we have a1 = a(gi−1, gi), a2 = a(gj , gj+1) ∈ CA(e, A),
and b1 = a(gi−1, −gj), b2 = a(−gi, gj+1) ∈ CA(e, B). We infer a reversal
r(i, j) from A to B.

– Transposition: If we have a1 =a(gi−1, gi), a2 = a(gj, gj+1), a3 = a(gk, gk+1) ∈
CA(e, A), and b1 = a(gi−1, gj+1), b2 = (gk, gi), b3 = (gj , gk+1) ∈ CA(e, b),
then we infer a transposition t(i, j, k) from A to B.

In practice, we do not know the permutations of the ancestral genomes. This im-
plies that our recovered events will be restricted to the identification of the affected
sets of adjacencies and not to the specific content of the segments affected.

152 H. Zhao and G. Bourque

3.1 A Naive Algorithm: All Versus All

We implemented the above idea into a naive algorithm All Vs All. Specifically,
to infer a reversal on an edge e = (A, B), we search all the a1, a2 ∈ CA(e, A)
and b1, b2 ∈ CA(e, B), such that they match the pairing associated with reversals
described in the Inference Rules. A conserved adjacency can only be involved
in a single rearrangement, so a1, a2 and b1, b2 will be removed from CA(e, A) or
CA(e, B) once they are used. Transpositions are recovered in a similar way.

Algorithm 1. All Vs All (G1, G2, . . . , Gm, T)

Input: Genomes G1, G2, . . . , Gm, and their phylogenetic tree T
Output: Inferred events on every edge e ∈ T
1. for each edge e = (A, B) ∈ T do
2. Compute CA(e, A) and CA(e, B)
3. for each edge e = (A, B) ∈ T do
4. Infer every possible reversal r and remove the 4 related adjacencies

from CA(e,A) and CA(e, B)
5. for each edge e = (A, B) ∈ T do
6. Infer every possible transposition t and remove the 6 related adjacencies

from CA(e,A) and CA(e, B)

3.2 Extension: EMRAE

All Vs All only makes use of adjacencies that are perfectly preserved in SA and
SB. This condition is very stringent and leaves room for possible extensions. For
example, in Figure 1, if a(1, 2) was disrupted by an additional rearrangement on
the edge (C, G2) then a(1, 2) would not be included in CA(e, A) even if it was
preserved in all the other genomes of SA (i.e. G1, G3 and G4). Because of this,
the reversal r(2, 4) on e would be missed. In order to retain such adjacencies, we
will relax our definition of conserved adjacencies.

Note that the descendants of A, SA, can be divided into two sets, SA,l (left)
and SA,r (right), such that SA = SA,l ∪ SA,r. The labelling as left or right here
is arbitrary. In the example shown in Figure 1, we have that SA,l = {G1, G2}
and SA,r = {G3, G4}. Given Gi ∈ SA,l and Gj ∈ SA,r, we denote the set of
adjacencies conserved in Gi and Gj by CA(e, A, i, j) and define it as:

CA(e, A, i, j) = {a | a ∈ Gi, a ∈ Gj ; a /∈ Gk, ∀Gk ∈ SB}.

The new relaxed definition for conserved adjacencies will be:

CA(e, A) =
⋃

{i,j |Gi∈SA,l ; Gj∈SA,r}
{CA(e, A, i, j)}.

Going back to our example, if a(1, 2) was affected by an additional rearrangement
on the edge (C, G2), then a(1, 2) /∈ CA(e, A, 2, 4) but a(1, 2) ∈ CA(e, A, 1, 4)
such that we would still have a(1, 2) in CA(e, A). We note that in loosening this

Recovering True Rearrangement Events on Phylogenetic Trees 153

definition, we have insured that the conserved adjacency was observed in a pair
of genomes with one genome coming from each subtree of A to ensure that it
was associated with the edge e as opposed to only be associated with an internal
edge in the descendants of A.

We have now relaxed our definition of conserved adjacencies but assume fur-
ther that we have the more complicated example shown in Figure 2. As be-
fore, the goal is to recover the events on e and a reversal r(2, 4) converted
the a(1, 2) and a(4, 5) in A into a(1, −4), a(−2, 5) in B but assume that an
additional reversal r(2, 7) affected a(1, −4) ∈ B and a(7, 8) ∈ B and led to
a(1, −7) ∈ C and a(4, 8) ∈ C. In this scenario, {a(1, 2), a(4, 5)} ⊆ CA(e, A) and
a(−2, 5) ∈ CA(e, B) but a(1, −4) would be “missing” in CA(e, B) since it can
not be found in the right subtree of B. Because of this, the adjacency would actu-
ally have shifted to the left subtree of B. In our second extension to All Vs All
we will seek to recover such adjacencies by adding them to the correct edges.

For convenience, in Figure 2, we label the edges leading to the left and
right subtree of B as el and er respectively. We say that an adjacency a ∈
CA(el, G1) is isolated if it does not overlap with any adjacency in CA(el, B).
For instance, a(1, −4) ∈ CA(el, G1) is isolated. From Figure 2, we observe that
on the edge er both a(1, −7) and a(4, 8) which are in CA(er, C) overlap with
a(7, 8) ∈ CA(er, B). This suggests that a(1, −7) and a(4, 8) are involved in an
event that took place on er but that one of their counterpart adjacencies is
missing in CA(er, B). This missing adjacency should include the genes 1 and 4
although their orientation is undetermined at this point. Because the isolation
of a(1, −4) ∈ CA(el, G1) appears to come from the disruption of a(1, −4) on er,
we want to add it into CA(e, B).

Formally, given an edge e = (A, B), its left branch el = (B, C) and its
right branch er = (B, D), we define the refinement of CA(e, B) as follows. If
a(i, j) ∈ CA(el, C) is isolated, and if a(i, k) and a(j, m) in CA(er, D) overlap
with a(k, m) ∈ CA(er, B), then add a(i, j) into CA(e, B). Similarly, add the iso-
lated adjacencies in CA(er , D) that satisfy the reciprocal condition on el back
into CA(e, B). Currently, our refinement is only based on using relaxed con-
served adjacencies and we do no use those newly-added adjacencies to refine
other edges. This implies that the refinement step does not depend on the order
of traversal of the edges.

Together, these two extensions form the Efficient Method to Recover Ancestral
Events (EMRAE).

4 Simulations

4.1 Random Breakage Model

We generated simulated data sets with m genomes containing n genes each.
First, a random tree T is generated. Next, one internal node of T is identified as
the identity permutation and we mimic the evolutionary history by performing
k rearrangements on each edge e. This k is a random integer such that 0 ≤
k ≤ 2 ∗ μ, where μ is the evolutionary rate of T and corresponds to the average

154 H. Zhao and G. Bourque

Algorithm 2. EMRAE (G1, G2, . . . , Gm, T)

Input: Genomes G1, G2, . . . , Gm, and their phylogenetic tree T
Output: Inferred events on every edge e ∈ T
1. for each edge e = (A, B) ∈ T do
2. Compute CA(e, A) and CA(e, B)
3. for each edge e = (A, B) ∈ T do
4. Refine CA(e, A) and CA(e, B)
6. for each edge e = (A, B) ∈ T do
7. Infer every possible reversal r and remove the 4 related adjacencies

from CA(e,A) and CA(e, B)
8. for each edge e = (A, B) ∈ T do
9. Infer every possible transposition t and remove the 6 related adjacencies

from CA(e,A) and CA(e, B)

number of events on each edge. This procedure is repeated down to every leaf
node. Finally we use the tree topology and the obtained permutations as the
input to the different algorithms. The positions in the permutations affected by
rearrangement events are randomly selected according to a uniform distribution.

We set m = 7, n = 100 and tested 3 distinct models: reversal-only, equally
likely reversal and transposition, and transposition-only. We evaluated the per-
formance of All Vs All and EMRAE by comparing them to MGR [2] and GRAPPA
[13]. As discussed in Section 3, an event recovered by All Vs All or EMRAE only
indicates a set of affected adjacencies. Although MGR and GRAPPA reconstruct
trees and ancestral genomes, they do not directly provide a detailed rearrange-
ment scenario as part of their output. As a surrogate, we used GRIMM [22] to
produce a most parsimonious scenario on each edge of the trees recovered by
MGR and GRAPPA. Moreover, although transpositions are not directly considered
by MGR or GRAPPA, they can be mimicked by 3 consecutive reversals. For instance,
suppose a transposition t(2, 3, 5) transforms a permutation A = 1 2 3 4 5 6 into
B = 1 4 5 2 3 6. A possible way to mimic the transposition t is to first perform
r(2, 3) to transform A into A1 =1 −3 −2 4 5 6. Then perform r(4, 5) on A1 to
get A2 = 1 −3 −2 −5 −4 6. And finally, perform r(2, 5) on A2 to get B = 1
4 5 2 3 6. There is a total of 6 possible ways to mimic a transposition with a
sequence of 3 reversals. For every edge of a tree produced by MGR or GRAPPA, we
will process the rearrangement scenario and look for such triplets of reversals
and label them as putative transpositions.

For a given data set and a list of events inferred by one of the algorithms, we
define:

Sensitivity =
Nb inferred real events
Total nb of real events

× 100,

Specificity =
Nb inferred real events

Total nb of inferred events
× 100.

The sensitivity measures the proportion of real events that are recovered while
the specificity measures the proportion of the predictions that are correct.

Recovering True Rearrangement Events on Phylogenetic Trees 155

a)

b)

se
ns

iti
vi

ty
(%

)
reversal−only

20
40

60
80

10
0

2.5 5.0 7.5 10.0

All_Vs_All
EMRAE
MGR
GRAPPA

20
40

60
80

10
0

2.5 5.0 7.5 10.0

sp
ec

ifi
ci

ty
(%

)

reversal−only

All_Vs_All
EMRAE
MGR
GRAPPA

20
40

60
80

10
0

2.5 5.0 7.5 10.0

se
ns

iti
vi

ty
(%

)

reversal+transposition

All_Vs_All
EMRAE
MGR
GRAPPA

sp
ec

ifi
ci

ty
(%

)

reversal+transposition

20
40

60
80

10
0

2.5 5.0 7.5 10.0

All_Vs_All
EMRAE
MGR
GRAPPA

20
40

60
80

10
0

1 2 3 4

transposition−only

se
ns

iti
vi

ty
(%

)

All_Vs_All
EMRAE
MGR
GRAPPA

20
40

60
80

10
0

1 2 3 4

transposition−only

sp
ec

ifi
ci

ty
(%

)

All_Vs_All
EMRAE
MGR
GRAPPA

Fig. 3. Performance of the different methods: a) sensitivities, b) specificities. The x-axis
is the evolutionary rate μ.

We generated 30 simulation instances for different μ and use the average
sensitivity and specificity to evaluate the performance of the different algorithms.
The results are shown in Figure 3 (see also Table S1 in the Appendix). Note that
we used lower values of μ in the transposition-only model since transpositions
are harder to recover and are assumed to be more rare in many actual data sets.

Our first observation based on Figure 3 is that EMRAE has a much higher
sensitivity than All Vs All. This indicates that the improvements we made over
All Vs All were significant. Also, EMRAE has a higher sensitivity as compared
to MGR and GRAPPA in all models that include transpositions. Interestingly, we
observe that although the sensitivity of MGR and GRAPPA in the reversal-only
model is higher than that of EMRAE, this difference is marginal. This is somewhat
unexpected given that this is the optimal model for both MGR and GRAPPA.

Moving on to the specificity, we note that both All Vs All and EMRAE have
scores that are consistently above 90%. In the two models involving reversals,
the specificity is significantly higher than MGR and GRAPPA. This is one of the
key features of our approach and confirms that the conservative inference leads
to predictions that are almost always correct. Note that the specificity of MGR

156 H. Zhao and G. Bourque

and GRAPPA for the transposition-only model is high because they make very few
predictions.

To test if the order of inference of reversals and transpositions could affect the
output, we also tried running EMRAE while reversing step 6 and 7 in algorithm 2.
Overall, we found that the sensitivities and specificities were consistent with the
results shown in Figure 3. This is somewhat expected given that if a conserved
adjacency was associated with both a reversal and a transposition, then at least
one of the predicted events would be wrong but recall that EMRAE has a very
high specificity.

In summary, EMRAE achieves significant sensitivity and comparable to both
MGR and GRAPPA. In terms of specificity, EMRAE clearly outperforms the other two
and leads to the identification of true events.

4.2 Fragile Regions Model

There has been a heated debate over the existence in genomes of fragile regions
that are more prone to breakage [16, 19, 15, 17]. We were also interested in
measuring the impact of enforcing a certain degree of breakpoint reuse in our
simulations. Specifically, we divide the positions (gi, gi +1) into weak and strong
ones. Weak positions are fragile and are more likely to be break. In our model
this is achieved with two parameters: x the proportion of weak positions and
y how much “weaker” the weak positions are as compared to the strong ones.
That is, for a position i:

y =
Pr(i breaks | i is weak)
Pr(i breaks | i is strong)

.

We increase or decrease the breakpoint reuse rate by adjusting the pair (x, y).
To make our simulations more realistic, we purposely selected the parameters

to produce scenarios that would be comparable to the Campanulaceae data set
[6]. Specifically, we chose m = 13, n = 107. To measure the extent of breakpoint
reuse, we relied on the notion of strip which is a maximal segment of genes
in the same order in all genomes. The 107 genes in the Campanulaceae data
set can be compressed into 36 strips. Since inputting this data set into MGR
returns a scenario with 65 reversals [2] and given that this tree has 23 edges, this
implies an evolutionary rate μ ≈ 2.82. We note however that simulating a tree
under the random breakage model described in the previous section with m=13,
n=107 and an evolutionary rate μ = 3 (which implies a total of approximately
23 × 3 = 69 reversals), leads to a data set that contains on average 82 strips.
This is much higher than the 36 observed in the Campanulaceae data set and
suggests significant breakpoint reuse. We will repeat the simulations but adjust
the parameters x, y and μ until two conditions are met: 1) the score of the tree,
as inferred by MGR, is ≈ 65 and 2) the number of strips is ≈ 36. Finally, results
for different values of x and y and μ = 3.5 are shown in Table 1. The values
(x, y) = (0.06, 20) appear to best match the Campanulaceae data set.

Recovering True Rearrangement Events on Phylogenetic Trees 157

Table 1. Breakpoint reuse and the number of strips in the permutations. The number
of strips gets smaller as the breakpoint reuse rate increases.

x y #MGR #strips
0.1 5 81.3 80.6
0.1 10 75 52
0.06 15 66.7 45
0.06 20 64.8 34

se
ns

iti
vi

ty
(%

)

a)

20
40

60
80

10
0

1 2 3 4

All_Vs_All
EMRAE
MGR
GRAPPA

20
40

60
80

10
0

1 2 3 4

sp
ec

ifi
ci

ty
(%

)

b)

All_Vs_All
EMRAE
MGR
GRAPPA

Fig. 4. Performance of the different algorithms on the fragile reversal-only model: a)
sensitivities, b) specificities. The four data points on the x-axis correspond to (x, y) =
(0.1, 5), (0.1, 10), (0.06, 15), and (0.06, 20), respectively.

Under these settings and a reversal-only model, we compared the predictions
EMRAE, MGR and GRAPPA (see Figure 4 and also Table S1 in the Appendix). As
expected, the sensitivity of all approaches is affected by breakpoint reuse but we
note that the specificity of EMRAE remains exceedingly high.

5 Result on Real Data

We have already presented the Campanulaceae Chloroplast data set [6]. The
result of applying EMRAE to this data set is shown in Figure 5a (note that we
have used as additional input MGR’s predicted topology). EMRAE only inferred 9
events (5 reversals and 4 transpositions), but recall that this is consistent with
what we have observed in the simulations that included a high rate of breakpoint
reuse (Figure 4a). Relying on the same simulations, we expect most of these 9
events to be true evolutionary events (Figure 4b).

We were interested in measuring the overlap between the predictions of
EMRAE and MGR to see if the former was only a subset of the latter. Recall that
MGR returned a scenario with 65 reversals. Analyzing this scenario suggested

158 H. Zhao and G. Bourque

Tobacco

Platycodon

Codonopsis

Cyananthus

Asyneuma

Legousia

Triodanus

Merciera

Wahlenbergia

Adenophora

Campanula

Symphyandra

Trachelium

1, 0

1, 1

1, 1

0, 1

1, 0

 0, 1

1, 0

a) b)

7, 2

1, 0

2, 1

4,11

2, 0
B.mallei (Bm)

B.pseudomallei (Bm)

B.thailandensis(Bm)

B.cepacia(Bc)

Bm: ...369 370 371........-873 -872 ...

Bp: ...369 370 371..........873 873 ...

Bt: ...369 370 371..........873 873 ...

Bc: 369 371......-873 -370 - 872 ...

c)

Fig. 5. EMRAE’s predictions on a) the Campanulaceae Chloroplast dataset, b)
Burkholdria data. The two numbers on an edge (if any) are the number of rever-
sals and transpositions inferred on that edge. c) Parts of the permutations associated
with Bm, Bp, Bt and Bc associated with one of the transposition recovered on the Bc
lineage.

that 3 of these reversals actually corresponded to a transposition. Overall, we
found that the two scenarios shared 3 common reversals and 1 transposition
confirming that EMRAE recovered distinct high quality evolutionary events (2
reversals and 3 transpositions).

The second data set that we analyzed consists of four bacterial species in
the Burkholderia family [10]. These genomes share 2435 genes spread on two
chromosomes. Very few genes are exchanged between chromosomes in this phy-
logeny and those genes are omitted for simplicity. Lin et al. [10] reported a
scenario with 240 reversals, of which 3 could be associated to a single trans-
position, leading to a scenario with 238 events. The result of applying EMRAE
using the known topology is shown in Figure 5b. The algorithm predicts 30
events: 16 reversals and 14 transpositions. For this data set most (14 out of 16)
of EMRAE’s reversals were also found in MGR’s predictions. That said, these 14
common high-quality reversals were buried in a very large set of predictions in
the MGR scenario. The only transposition predicted by MGR was also found by
EMRAE. Overall, our algorithm predicted 13 additional transpositions but this is
to be expected based on Figure 3. An example of such a transposition is shown
in Figure 5c.

Recovering True Rearrangement Events on Phylogenetic Trees 159

Because in both real data sets the number of predictions is much smaller than
the total number of rearrangements predicted by MGR, we deduce that breakpoint
reuse is common in these scenarios. Nevertheless, we remain confident that the
predictions that are made by EMRAE are of high quality based on our simulations.

6 Discussion

We have presented an efficient method to infer partial rearrangement scenarios
consisting of only reliable rearrangement events.

Some of the important future directions include:

– Extensions to predict other types of events: 1) translocations, fusions and
fissions for multi-chromosomal genomes and 2) insertions and deletions to
expand to genomes with unequal content. This would require the modelling
of the impact of these new events on adjacencies and should be relatively
straightforward.

– Application to larger genomes (e.g. sequenced mammalian genomes) followed
by an in-depth analysis of the recovered events to gain mechanistic insights
into the likely causes of rearrangements events.

Improving our understanding of the evolutionary forces driving large-scale rear-
rangement events has been a promise only partially fulfilled by previous com-
putational analysis. Perhaps trusting only highly reliable ancestral events, such
as the ones obtained using this approach, will lead to new insights. Ultimately,
this knowledge will feed back into the design of more accurate rearrangement
models and scenarios.

Acknowledgements

We would like to thank the reviewers for helpful suggestions. This work is sup-
ported by funds from the Biomedical Research Council (BMRC) of Singapore.

References

[1] Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM Journal on Discrete
Mathematics 11(2), 224–240 (1998)

[2] Bourque, G., Pevzner, P.A.: Genome-scale evolution: reconstructing gene orders
in the ancestral species. Genome Res. 12, 26–36 (2002)

[3] Bourque, G., Tesler, G., Pevzner, P.A: The convergence of cytogenetics and
rearrangement-based models for ancestral genome reconstruction. Genome
Res. 16(3), 311–313 (2006)

[4] Bourque, G., Zdobnov, E.M., Bork, P., Pevzner, P.A., Tesler, G.: Comparative ar-
chitectures of mammalian and chicken genomes reveal highly variable rates of ge-
nomic rearrangements across different lineages. Genome Res. 15(1), 98–110 (2005)

160 H. Zhao and G. Bourque

[5] Caprara, A.: Formulations and complexity of multiple sorting by reversals. In:
RECOMB 99, pp. 84–93 (1999)

[6] Cosner, M., Jansen, R., Moret, B., Raubeson, L., Wang, L., Warnow, T., Wyman,
S.: A new fast heuristic for computing the breakpoint phylogeny and experimental
phylogenetic analyses of real and synthetic data. In: ISMB00, pp. 104–115 (2000)

[7] Froenicke, L., Caldes, M.G., Graphodatsky, A., Muller, S., Lyons, L.A, Robinson,
T.J, Volleth, M., Yang, F., Wienberg, J.: Are molecular cytogenetics and bioinfor-
matics suggesting diverging models of ancestral mammalian genomes?. Genome
Res. 16(3), 306–310 (2006)

[8] Hannenhalli, S., Chappey, C., Koonin, E., Pevzner, P.: Genome sequence compar-
ison and scenarios for gene rearrangements: A test case. Genomics 30, 299–311
(1995)

[9] Larget, B., Simon, D., Kadane, J., Sweet, D.: A bayesian analysis of metazoan
mitochondrial genome arrangements. Mol. Biol. Evol. 22(3), 486–495 (2005)

[10] Lin, C.H., Bourque, G., Tan, P.: Comparative analysis of Burkholderia species
reveals an association between large-scale and fine-scale divergence in prokaryotes.
In: preparation (2007)

[11] Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C, Kent, W J., Blanchette,
M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral
genome. Genome Res. 16(12), 1557–1565 (2006)

[12] Miklos, I.: MCMC genome rearrangement. Bioinformatics 19(90002), 130ii–137
(2003)

[13] Moret, B.M.E., Wyman, S., Bader, D.A., Warnow, T., Yan, M.: A new imple-
mentation and detailed study of breakpoint analysis. In: PSB 2001, pp. 583–594
(2001)

[14] Murphy, W.J., Larkin, D.M., van der Wind, A.E.-, Bourque, G.: Dynamics of
mammalian chromosome evolution inferred from multispecies comparative maps.
Science 309(5734), 613–617 (2005)

[15] Peng, Q., Pevzner, P.A, Tesler, G.: The fragile breakage versus random breakage
models of chromosome evolution. PLoS Comput. Biol. 2(2), 14 (2006)

[16] Pevzner, P., Tesler, G.: Human and mouse genomic sequences reveal extensive
breakpoint reuse in mammalian evolution. Proc. Natl. Acad. Sci. U S A 100(13),
7672–7677 (2003)

[17] Sankoff, D.: The signal in the genomes. PLoS Comput. Biol. 2(4), e35 (2006)
[18] Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B., Cedergren, R.: Gene

order comparisons for phylogenetic inference: Evolution of the mitochondrial
genome. Proceedings of the National Academy of Sciences USA 89, 6575–6579
(1992)

[19] Sankoff, D., Trinh, P.: Chromosomal breakpoint reuse in genome sequence rear-
rangement. J. Comput. Biol. 12(6), 812–821 (2005)

[20] Savva, G., Dicks, J.L., Roberts, I.N.: Current approaches to whole genome phy-
logenetic analysis. Briefings in Bioinformatics 4(1), 63–74 (2003)

[21] Siepel, A.: An algorithm to find all sorting reversals. In: RECOMB02, pp. 281–290
(2002)

[22] Tesler, G.: GRIMM: genome rearrangements web server. Bioinformatics 18(3),
492–493 (2002)

[23] Walter, M., Dias, Z., Meidanis, J.: A new approach for approximating the trans-
position distance. In: De La Fuenta, P. (ed.) SPIRE, pp. 199–208. IEEE Computer
Society Press, Los Alamitos (2000)

Recovering True Rearrangement Events on Phylogenetic Trees 161

Appendix

Table S1. Performance of the different methods in terms of the number of
predicted events: a) number of true predictions, and b) number of false predic-
tions. Each number in the last column corresponds to the average number of
real events on a tree. The μ = 1, 2, 3, 4 for reversal-only (fragile) correspond to
(x, y) = (0.1, 5), (0.1, 10), (0.06, 15), (0.06, 20), respectively.

a)
model μ All Vs All EMRAE MGR GRAPPA nb of real events

2.5 8.6 24 24.4 23.8 27.5
reversal-only 5 8.4 33.6 39.5 38 55

(random) 7.5 3.5 41.3 53.8 48 82.5
10 0 41.8 62.7 60.2 110
2.5 5.4 19.7 13 10.2 27.5

reversal + transposition 5 4.5 35.2 22 19.5 55
(random) 7.5 0 30.5 22 21.2 82.5

10 0 23.3 21.6 18.2 110
1 3.9 10.1 5 2.5 11

transposition-only 2 3.8 16.9 4.6 0 22
(random) 3 2.5 19.1 5.3 0 33

4 0.9 18.9 3.8 0 44
1 4 48.6 60.7 55 80.5

reversal-only 2 1.7 16.2 31.4 32.2 80.5
(fragile) 3 0.8 7.6 21 20.2 80.5

4 0.8 7.3 18.6 18.9 80.5

b)
model μ All Vs All EMRAE MGR GRAPPA nb of real events

2.5 0 0 3.3 4 27.5
reversal-only 5 0 0.6 15.4 17.5 55

(random) 7.5 0 1.3 29.66 35.9 82.5
10 0 1.7 48.3 50.8 110
2.5 0 0.2 26.9 31.5 27.5

reversal + transposition 5 0 0.7 57.4 62.2 55
(random) 7.5 0 1.2 102.4 104.3 82.5

10 0 1.2 144.3 149 110
1 0 0 0 0 11

transposition-only 2 0 0 0 0 22
(random) 3 0 0 0 0 33

4 0 0 0 0 44
1 0 1 19.1 30.9 80.5

reversal-only 2 0 0.7 47.1 44.8 80.5
(fragile) 3 0 0.7 44.8 45.1 80.5

4 0 0.8 45.6 47.5 80.5

Parts of the Problem of Polyploids

in Rearrangement Phylogeny

Chunfang Zheng, Qian Zhu, and David Sankoff

Departments of Biology, Biochemistry, and Mathematics and Statistics,
University of Ottawa, Ottawa, Canada K1N 6N5

{czhen033,qzhu012,sankoff}@uottawa.ca

Abstract. Genome doubling simultaneously doubles all genetic mark-
ers. Genome rearrangement phylogenetics requires that all genomes ana-
lyzed have the same set of orthologs, so that it is not possible to include
doubled and unduplicated genomes in the same phylogeny. A frame-
work for solving this difficulty requires separating out various possible
local configurations of doubled and unduplicated genomes in a given
phylogeny, each of which requires a different strategy for integrating ge-
nomic distance, halving and rearrangement median algorithms. In this
paper we focus on the two cases where doubling precedes a speciation
event and where it occurs independently in both lineages initiated by a
speciation event. We apply these to a new data set containing markers
that are ancient duplicates in two yeast genomes.

1 Introduction

Basic rearrangement phylogeny methods require that the genomic content be the
same in all the organisms being compared, so that every marker (whether gene,
anchor, probe binding site or chromosomal segment) in one genome be identified
with a single orthologous counterpart in each of the others, though adjustments
can be made for a limited amount of marker deletion, insertion and duplication.

Many genomes have been shown to result from an ancestral doubling of
the genome, so that every chromosome, and hence every marker, in the entire
genome is duplicated simultaneously. Subsequently, the doubled genome evolves
through mutation at the DNA sequence level and by chromosomal rearrange-
ment, through intra- and interchromosomal movement of genetic material. This
movement can scramble the order of markers, so that the chromosomal neigh-
bourhood of a marker need bear no resemblance to that of its duplicate.

The present-day genome, which we refer to here as a doubling descendant,
can be decomposed into a set of duplicate or near-duplicate markers dispersed
among the chromosomes. There is no direct way of partitioning the markers
into two sets according to which ones were together in the same half of the
original doubled genome. Genomic distance or rearrangement phylogeny algo-
rithms are not applicable to doubling descendants, since there is a two-to-one
relationship between markers in the doubling descendant and related species
whose divergence predates the doubling event, whereas these algorithms require
a one-to-one correspondence.

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 162–176, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Parts of the Problem of Polyploids in Rearrangement Phylogeny 163

We have undertaken a program [11,9] of studying rearrangement phylogeny
where doubling descendants are considered along with related unduplicated
genomes. We believe there is no other computationally-oriented literature on
this particular problem. To focus on the problem of marker ambiguity in dou-
bling descendants, and to disentangle it from the difficulties of constructing
phylogenies, we pose our computational problems only within the framework of
the “small” phylogenetic problem, i.e., identifying the ancestral genomes for a
given phylogeny that jointly minimize the sum of the rearrangement distances
along its branches.

In Section 2, we outline a model for generating an arbitrary pattern of doubled
descendants observed at the tips of a given phylogeny. Based on this model, we
then present an simple algorithm for inferring the doubling status of the ancestral
genomes in terms of an economical set of doubling events along the branches of
the phylogeny. Once we have the ancestral doubling statuses, we can approach
the actual rearrangement problem.

First, in Section 3, we identify three kinds of component of this problem for
which algorithms already exist, one a calculation of the genomic distance between
two given genomes with clearly identified orthologs, i.e., the minimum number
of rearrangements necessary to transform one genome into another; the second
a “halving” algorithm for inferring the genome of a doubled genome based on
internal evidence from its modern descendant only, and the third a “medianizing”
process for inferring an ancestral genome from its three neighbouring genomes
in a binary branching tree.

In Section 4, we discuss our recent papers [11,9] on incorporating algorithms for
the three components into an overall procedure for inferring ancestral genomes
in the case of one doubling descendant and two related unduplicated genomes.
The contribution of the present paper starts in Section 5 where we analyze two
ways of relating genomes from two doubling descendants, one where they result
from a single genome doubling event followed by a speciation, and the other where
speciation precedes two genome doublings, one in each lineage. In Section 7, we
apply these two methods to a large data set on yeast.

1.1 Terminology and Scope

In biology, the concept of genome doubling is usually expressed as tetraploidiza-
tion or autotetraploidization, and the both the doubled genome and its doubling
descendant are called tetraploid, even though, generally, the descendants soon
undergo a process called (re-)diploidization and function as normal diploids,
still carrying a full complement of duplicate markers that evolve independently
of each other. Though unambiguous in biological context, implicit in this termi-
nology are many assumptions that are not pertinent to our study. In the yeast
data we study here, for example, Saccharomyces cerevisiae exists during most of
its life cycle as a haploid, only sometimes as a diploid, while Candida glabrata
exists uniquely as a haploid.

164 C. Zheng, Q. Zhu, and D. Sankoff

In our considerations, the key aspect of genome doubling is the global dupli-
cation of chromosomes and markers at the moment of doubling. Ploidy is not
relevant in that in any organism that reproduces by meiosis or even by mitosis,
the order of the markers on any of the haploid components (e.g., maternal versus
paternal chromosomes) is essentially identical. There may be different alleles, or
other local differences, but the order is basically invariant. Ongoing variation and
evolution at the level of chromosomal structure in an individual or species are
considered negligible in comparison with the major rearrangements that exist
between genomes separated on an evolutionary time scale.

Although this paper is about polyploidy, then, we will rely largely on terminol-
ogy independent of ploidy: genome doubling, doubling descendant, unduplicated
genomes, genome halving.

The marker complement of a genome may also double by another process,
allotetraploidization, or fusion of two different genomes, a kind of hybridiza-
tion that is probably at least as important biologically as the doubling of a
single genome we focus on in this paper. We do not consider this process here,
for three reasons. One is our interest in exploring the essential difficulty in the
mathematics of doubling, namely the complete ambiguity as to which set of du-
plicate markers were together in each of the two copies of the original genome.
For hybrid doubled genomes, DNA sequence evidence from related but undupli-
cated genomes can generally resolve this ambiguity [5]. Second, hybrids require
reticulate phylogenies which, though of interest themselves, constitute an un-
wanted layer of difficulty that we wish to keep separate at this stage. Finally,
some of the most interesting doubling events (outside the plant kingdom), such
as the ones hypothesized in the “2R” model of early vertebrate evolution or the
well-established doubling in the ancestor of budding yeasts Saccharomyces cere-
visiae and Candida glabrata, which furnish the empirical example for this paper,
are usually treated as doubling of a single genome.

2 Generation and Inference of Polyploidy

Our algorithms require genomic sequence data or other high resolution marker
data spanning the entire genome. This, of course, is only available in a limited
number of phylogenetic domains within the eukaryotes, and then only from se-
lected organisms. Our analysis may also benefit from information on doubling
status not only about the sequenced or mapped genomes, but also from closely
related organisms. Fortunately such information is much easier to obtain exper-
imentally and to come by in the literature, though ancestral events often require
inferential leaps based on the number of chromosomes or the distribution of the
number of copies of each marker.

Our first task, given some mixture of doubling descendants and unduplicated
genomes related by a phylogenetic tree, is to infer the doubling status of the
all the ancestral genomes. Under the simplifying assumptions that all ploidies
are powers of two and can only remain unchanged or change by a factor of two

Parts of the Problem of Polyploids in Rearrangement Phylogeny 165

8 2 4 4 4 4 2 2 4

time

origin

present 8 2 4 4 4 4 2 2 4

2 2 2

2 4 2

2

2

Fig. 1. Example of doubling inference problem. Genomes observed only for leaves (filled
dots) of phylogeny. 2 = diploid unduplicated genome. Inferred doubling events indicated
by red dots.

at each step, and the parsimony criterion that the number of doubling steps is
to be minimized, the task is achieved by the recurrence

Π(v) = min
daughter species u of v

Π(u)

at each ancestral vertex v of a phylogenetic tree, as depicted in Fig. 1.
Once Π is inferred, the doubling events may be inferred to occur on those

branches of the tree where the Π differs at the two ends. This is also depicted in
Fig.1. In the ensuing sections, we will illustrate the local configurations giving
rise to various inference problems by highlighting appropriate portions of the
tree in Fig. 1.

3 Existing Resources

Once we have inferred the doubling status of the ancestral genomes, how are we
to approach our original problem: to reconstruct the marker order of the ancestral
genomes and thus infer the cost of the phylogeny in terms of rearrangement
events? Here we discuss some basic elements of the solution.

Genomic distance. Distance based on genomic structure d(X, Y) is calculated
by linear-time rearrangement algorithms for finding the minimum number of
operations necessary to convert one genome X into another Y . Genomic distance
is defined only between genomes of the same ploidy, as highlighted in the leftmost
example depicted in Fig. 2.

The biologically-motivated rearrangement operations we consider include in-
versions (implying as well change of orientation) of chromosomal segments con-
taining one or more markers, reciprocal translocations (of telomere-containing
segments – suffixes or prefixes – of two chromosomes) and chromosome fission
or fusion. We use the versatile rearrangement algorithm of Bergeron et al. [1],
which we constrain to allow only the operations we have listed.

166 C. Zheng, Q. Zhu, and D. Sankoff

2 2 2

2 4 2

8 2 4 4 4 4 2 2 4

2

2

X Y

2 2 2

2 4 2

8 2 4 4 4 4 2 2 4

2

2

T

A

2 2 2

2 4 2

8 2 4 4 4 4 2 2 4

2

2

Z X Y

M

Fig. 2. Clockwise, from upper left: Genomic distance, Genome halving, Rearrangement
median

Genome halving. Given a genome T containing a set of markers, each of which
appears twice on the genome, on the same or on different chromosomes, how can
we construct a genome A containing only one copy of each marker, and such that
the genome A ⊕ A consisting of two copies of each chromosome in A minimizes
d(T, A⊕A)? This problem is illustrated in the rightmost example in Fig. 2. Here
we use a linear-time algorithm for solving this problem [6].

Rearrangement median. Given three genomes X ,Y and Z, how can we find the
median genome M such that d(X, M)+d(Y, M)+d(Z, M) is minimized. For this
NP-hard problem, illustrated in the bottom example in Fig. 2. we implement a
heuristic using the principles of Bourque’s MGR [2], but based on the constrained
version of the Bergeron et al. [1] algorithm.

4 Parts Already in Place

In this section we discuss heuristics for prototypical phylogeny problems involv-
ing doubling descendant, and either one or two related unduplicated genomes.

Let T be a doubling descendant, i.e., with n different chromosomes, and 2m
markers, g1,1 · · · , g1,m; g2,1, · · · , g2,m, dispersed in any order on these chromo-
somes. For each i, we call g1,i and g2,i “duplicates”, and the subscript “1” or
“2” is assigned arbitrarily. A potential ancestral doubled genome of T is written
A⊕A, and consists of 2n′ chromosomes, where some half (n′) of the chromosomes

Parts of the Problem of Polyploids in Rearrangement Phylogeny 167

2 2 2

2 4 2

8 2 4 4 4 4 2 2 4

2

2

T R

A

2 2 2

2 4 2

8 2 4 4 4 4 2 2 4

2

2

T R1 R2

A

Fig. 3. Genome halving with one (left) or two (right) unduplicated outgroups

contains exactly one of each of g1,i or g2,i for each i = 1, · · · , m. The remaining n′

chromosomes are each identical to one in the first half, in that where g1,i appears
on a chromosome in the first half, g2,i appears on the corresponding chromosome
in the second half, and vice versa. We define A to be either of the two halves of
A ⊕ A, where the subscript 1 or 2 is suppressed from each g1,i or g2,i. These n′

chromosomes, and the m markers they contain, g1, · · · , gm, constitute a potential
ancestor of T that incurred the doubling event .

Genome halving with an outgroup. With reference to the left of Fig. 3, con-
sider T and and a related unduplicated genome R with markers orthologous to
g1, · · · , gm. Our problem is to find an unduplicated genome A that minimizes

D(T, R) = d(R, A) + d(A ⊕ A, T). (1)

Our solution in [11], as on the left of Fig. 4, is to generate the set S of genome
halving solutions, then to focus of the subset X ∈ S′ ⊂ S where d(R, X) is min-
imized. We then minimize D(T, R) by seeking heuristically for A along any
trajectory between elements of S′ and the outgroups.

Genome halving with two outgroups. With reference to the right of Fig. 3, con-
sider T and two unduplicated genomes R1 and R2 with markers orthologous to
g1, · · · , gm. Our problem here is to find a diploid genome A and a median genome
M of A, R1 and R2 that minimize

D(T, R1, R2) = d(R1, M) + d(R2, M) + d(A, M) + d(A ⊕ A, T). (2)

Our solution in [9], as on the right of Fig. 4, is to generate the set S of solu-
tions of the genome halving problem, then to focus of the subset X ∈ S′ ⊂ S
where d(R1, M) + d(R2, M) + d(X, M) is minimized. Then the A minimizing
D(T, R1, R2) is sought, heuristically, along all trajectories between all elements
X ∈ S′ and M(X).

168 C. Zheng, Q. Zhu, and D. Sankoff

5 The Case of Two Doubling Descendants

Two related doubled descendants may arise in two ways, depending on the timing
of the speciation event in relation to the doubling. Either speciation at V follows
a single doubling event, as at A on the left of Fig. 5, or the speciation precedes
two independent doubling events in the two lineages, as at A and B on the right
of the figure. Knowing which of the two scenarios is correct depends on knowing
whether their common ancestor is doubled or not, information obtained from
the algorithm in Section 2 or other data.

We will introduce new methods based on tweaking the distance and halving
algorithms, conserving the optimality of the solutions, but allowing one of them
to affect the arbitrary choices required to construct the solution for the other.
First we sketch the halving algorithm.

S

R

T

X

A

S

M(X)

R1

R2

T

X

A

Fig. 4. Halving a doubling descendent T , with one (R) or two (R1, R2) unduplicated
outgroups. The double circles represent two copies of potential ancestral genomes,
including solutions to the genome halving in S, and those on best trajectories between
S and outgroups.

5.1 Halving

Without entering into all its details, we can present enough of the essentials of
the halving algorithm to understand the techniques we use in our heuristics.

As a first step each marker x in a doubled descendant is replaced by a pair
of vertices (xt, xh) or (xh, xt) depending if the DNA is read from left to right
or right to left. The duplicate of marker x = (xt, xh) is written x̄ = (x̄t, x̄h). Of
course ¯̄a = a.

Following this, for each pair of neighbouring markers, say (xt, xh) and (yh, yt),
the two adjacent vertices xh and yh are linked by a black edge, denoted {xh, yh}
in the notation of [1]. For a vertex at the end of a chromosome, say yt, it generates
a virtual edge of form {yt, O}.

The edges thus constructed are then partitioned into natural graphs according
to the following principle: If an edge {a, b} belongs to a natural graph, then so
does some edge of form {ā, c} and some edge of form {b̄, d}. If a natural graph
has an even number of edges, it can be shown that in all optimal ancestral

Parts of the Problem of Polyploids in Rearrangement Phylogeny 169

2 2 2

2 4 2

8 2 4 4 4 4 2 2 4

2

2

T U

V

A

2 2 2

2 4 2

8 2 4 4 4 4 2 2 4

2

2

T U

A B

Fig. 5. Left: Doubling, then speciation. Right: Speciation, then two independent
doublings.

doubled genomes, the edges coloured gray, say, representing adjacent vertices in
the ancestor, and incident to one of the vertices in this natural graph, necessarily
have as their other endpoint another vertex within the same natural graph1.

For all other natural graphs, there are one or more ways of grouping them pair-
wise into supernatural graphs so that an optimal doubled ancestor exists such that
the edges coloured gray incident to any of the vertices in a supernatural graph have
as their other endpoint another vertex within the same supernatural graph.

Along with the multiplicity of solutions caused by different possible construc-
tions of supernatural graphs, within such graphs and within the natural graphs,
there may be many ways of drawing the gray edges. Without repeating here the
lengthy details of the halving algorithm, it suffices to note that these alternate
ways can be generated by choosing one of the vertices within each supernatural
graph as a starting point.

5.2 Doubling First

Given two doubling descendants T and U as on the left of Figure 5, we would
ideally like to find the doubling descendant V that minimizes d(T, V)+d(V, U)+
d(V, A ⊕ A), where A is any solution of the halving problem on V . Though
d is calculated in linear time, multiple genome rearrangement problems based
on d (e.g., the median problem in Section 3) are hard, so here we propose a
somewhat constrained version of our problem, where V is assumed to be on a
shortest trajectory between T and U . Because d(T, V) + d(V, U) = d(T, U) is
then constant, the problem becomes that of finding V to minimize d(V, A ⊕ A).

Because it is an edit distance, a genomic distance measurement d(T, U) is
associated with at least one trajectory containing d(T, U)−1 genomes as well as

1 Space precludes us from elaborating on the connection between the optimality cri-
terion – the minimum number of rearrangements to transform the doubled ancestor
to the doubled descendant – and the nature of the bicoloured graph defined by the
black and gray edges. Suffice it to indicate that this involves maximizing the number
of (alternating coloured) cycles and certain paths that make up this graph.

170 C. Zheng, Q. Zhu, and D. Sankoff

T and U themselves, where each successive pair of genomes along the trajectory
differ by exactly one rearrangement operation.

Before explaining a heuristic search for a solution to the constrained version
of the problem, we recall the edge notation we use to represent the adjacencies
in a genome [1]. If two vertices a and b from different markers are adjacent in a
genome, we represent this by an edge {a, b} = {b, a}; for a vertex c is at the end of
a chromosome and hence adjacent to no other vertex, we construct a virtual edge
{c, O}. Then any rearrangement operation can be represented by an operation
on one or two terms in the representation, such as {a, b}, {c, d} → {b, d}, {a, c}
or {a, b} → {b, O}, {a, O} or {a, b}, {c, O} → {b, O}, {a, c}.

We initialize T ∗ = T, U∗ = U . Then our heuristic consists of a search, at
each step, for the “most promising” operation that moves T ∗ towards U∗ or
U∗ towards T ∗. For each operation, we define a score W = x + 6y as follows.
The y component, which is heavily weighted, measures whether the operation
actually diminishes d(V, A⊕A), while the x measures whether the operation only
increases the potential of diminishing d(V, A ⊕ A) in a subsequent operation.

Consider the possible operations that remain on a trajectory from T to U , i.e.,
if V1 is transformed into V2 by the operation, then d(T, V2) = d(T, V1) + 1 and
d(V2, U) = d(V1, U) − 1. We set y = d(V1, A1 ⊕ A1) − d(V2, A2 ⊕ A2) + 1, where
A1 and A2 are solutions of the halving problem for V1 and V2, respectively.

In evaluating an operation changing T ∗, such as {a, b}, {c, d} → {b, d}, {a, c},
we consider the following eight pairs:{a, b},{c, d}, {b, d},{a, c},{ā, b̄},{c̄,d̄}, {b̄, d̄},
{ā, c̄}.

The operation would clearly seem advantageous for subsequent operations if
{b̄, d̄} and/or {ā, c̄} were in T ∗ and/or U∗. There are from zero to four advanta-
geous possibilities. In addition, although one of {b, d}, {a, c} must be in U∗ for
the operation not to veer from an optimal trajectory, it is not necessary that
both of them be. There are zero or one advantageous possibilities. We count how
many h of the total of five advantageous possibilities occur and set x = h + 1.

The score W is in the range [1, 18]. We calculate WT ∗ in this way and
WU∗ by considering operations changing U∗ in the direction of T ∗. Let WX =
maxall operations WX∗ .

If WT ≥ WU and WT ≥ 6, we apply the highest score operation to T ∗. Oth-
erwise apply the highest score operation to U∗, as long as this WU > 1. The
results of this operation and any other having the same score are added as nodes
to a search tree. (The search tree was initialized when T ∗ = T and U∗ = U .)
When there are no more operations that can be applied, we continue to build
the search tree at a higher node. Finally, the leaves of the search tree are exam-
ined to find the highest scoring genome to be V , the last common ancestor of
T and U .

Using a range W ∈ [1, 18] proves clearly better than simply choosing eval-
uating an operation according to whether it y = 1 or y �= 1. For example, in
simulations generated with d(T, V) = 60, d(V, U) = 55, d(V, A ⊕ A) = 24, the
average estimate d(V, A ⊕ A) using an 18-value scale was 29.8, an overestimate
of 24%, compared to 31.7 with a two-value scale, an overestimate of 32%.

Parts of the Problem of Polyploids in Rearrangement Phylogeny 171

5.3 Speciation First

In Section 5.2, d(T, V) + d(V, U) was fixed and the problem was to find the com-
mon ancestor V with the shortest history from the doubling event. We now con-
sider the halving distances of T and U both to be fixed, and look for the particular
unduplicated genomes, ancestral to T and U , that are closest together. Our Al-
gorithm 1 simultaneously halves T and U , choosing the initial vertex within each
of the supernatural graphs (henceforward SNGs) so as to maximize the number
of gray edges in common in the two ancestral genomes being constructed.

Both this heuristic and the one in Section 5.2 are basically O(m3) to arrive at
a single estimate. This, however, generally produces a locally optimal solution.
This is improved by maintaining a search tree in association with each algorithm.
Then the running time is controlled by how large a search tree is maintained in
the quest for lower estimates.

6 Simulations

Simulations of the doubling first model (five chromosomes, number of markers
m = 200, inversions to translocations proportion 5:3, random choice of chromo-
somes to be rearranged, random breakpoints on chromosomes) show that our
algorithm accurately reconstructs the number ν of rearrangements (ten replica-
tions for each value of ν) between the doubling event and the speciation event,
as long as this is not too large (Fig. 6, top). With a longer interval between
doubling and speciation, the halving algorithm reconstructs the unduplicated
ancestor too economically. This, however, is a function not of the number of
rearrangements in the simulation, but of the number of markers. If the number
of markers is doubled from 200 to 400, the inferred number of rearrangements
is corrected, as indicated by the square dot in the figure.

Simulations of the speciation first model (m = 400) show that while the
genome halving distances accurately estimate the number of rearrangements be-
tween doubled ancestor and doubled descendant in the simulation (data not
shown here), the estimated unduplicated ancestors are further apart than the
genomes actually generated in the simulation (Fig. 6, bottom). This bias in-
creases dramatically as a function, not of the distance itself, but of the amount
of rearrangement these ancestors incur to produce the observed doubling descen-
dant. When this “age” is 20, 50 and 80 rearrangements, the bias in the distance
between the ancestors increases from 4 to 18 to 37, respectively. This reflects
the severely non-unique result of the halving algorithm, which our algorithm
attenuates by forcing the reconstructed doubled genomes to resemble each other
as much as possible, but cannot eliminate, especially as the age of the doubling
events recedes into the past.

Nonetheless, the superiority of our algorithm in constraining the two simul-
taneous halving processes to create ancestor genomes as close as possible, in
comparison with a search over all pairs in ST × SU, the Cartesian product of
the two complete sets of solutions of the halving algorithm, is clear in another
experiment.

172 C. Zheng, Q. Zhu, and D. Sankoff

Algorithm 1

Construct σT and σU , the set of supernatural graphs for T and U , respectively.
Initialize σ

(1)
T = the subset of SNGs with 2 black edges and σ

(0)
T = σT \ σ

(1)
T

Initialize σ
(1)
U = the subset of SNGs with 2 black edges and σ

(0)
U = σU \ σ

(1)
U

Step1: Order σT and σU

while there remain SNGs in σ
(0)
T or SNGs in σ

(0)
U

while there remain SNGs in σ
(0)
T and either σ

(0)
U is empty or the number of

black edges in σ
(1)
T is no more than in σ

(1)
U , we find a SNG in σ

(0)
T , to

move from σ
(0)
T to σ

(1)
T , as follows:

for each SNG s in σ
(0)
T , to count the maximum possible number of

gray edges it could have in common with SNGs in σ
(1)
U :

for i = 1, · · · , |σ(1)
U |, if SNG s has ki vertices in common with

ti, the i−th SNG in σ
(1)
U , the maximum number of gray

edges they have in common is [ki
2].

Then the score of s is
∑

i,···,|σ(1)
U

|[
ki
2].

We add the highest scoring s to σ
(1)
T .

end while
while there remain SNGs in σ

(0)
U , and either σ

(0)
T is empty or the number

of black edges in σ
(1)
U is less than σ

(1)
T), we find a SNG in σ

(0)
U , to

move from σ
(0)
U to σ

(1)
U , in the analogous way as for T

end while
end while
Step2: Adding gray edges to σT and σU

For the root node of the search tree, add gray edges to all 2-edge SNGs in σT

and σU

while there remain SNGs in σT or σU without gray edges.
while there remain SNGs in σT without gray edges and either all SNGs in

σU have gray edges or the number of gray edges in σT is no more
than the number of gray edges in σU , let s be the first SNG in σT

(according to the order in which it was added to σ
(1)
T) that has no

gray edges. If s has l black edges, then we have l ways to choose the
first black edge in this s, and 2 choices for orienting this edge,
2l choices in all, after which the dedouble algorithm proceeds
deterministically to add gray edges within the SNG s.
We add nodes to the search tree representing all the choices (out of
the 2l) that maximize the number of gray edges in common with σU .

end while
while there remain SNGs in σU without gray edges either all SNGs in σT

have gray edges or the number of gray edges in σU is less than the
number of gray edges in σT , let s be the first SNG in σU (according to

the order in which it was added to σ
(1)
U) that has no gray edges. We

use the same process as with T to get the best orderings within s and
the associated gray edges.

end while
end while
Solutions to the genome halving can then be found by tracing backwards from
any leaf in the search tree.

Parts of the Problem of Polyploids in Rearrangement Phylogeny 173

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

number of rearrangements generated

n
u
m

b
e
r

o
f

re
a
rr

a
n
g
e
m

e
n
ts

 c
a
lc

u
la

te
d

inferred

ancestors

simulated

ancestors

0

20

40

60

80

100

120

0 20 40 60 80 100

number of rearrangements generated

n
u
m

b
e
r

o
f

re
a
rr

a
n
g
e
m

e
n
ts

 c
a
lc

u
la

te
d

distance between
ancestors, inferred

t

distance between
ancestors, simulated

t

age of ancestors

 old

 medium

recent

Fig. 6. Estimated distance: top, between doubling and speciation (age of ancestor=50),
bottom, between unduplicated ancestors (ages: old=80, medium=50, young=20)

We set the initial number of markers to be 150, randomly assigned to 8
chromosomes. Then we carried out 45 random rearrangements to create one
doubling ancestor and 38 independent rearrangements to create another. After
tetraploidization formed two 300-marker genomes, we applied another 42 and 50
rearrangements, respectively, to create the modern doubling descendants. Then,
using our knowledge of the ancestral genomes, we found that the distance be-
tween the two simulated ancestors was 75 and that the halving distances were 38
and 50, respectively. Using our speciation first algorithms on the two doubling

174 C. Zheng, Q. Zhu, and D. Sankoff

descendants, we reached an inter-ancestor distance d(A, B) = 84 (instead of the
simulated distance of 75) after three hours of calculation while the search of the
Cartesian product only dropped to 87 (from 102) after 24 hours of calculation,
involving almost 1,000,000 pairs of optimal ancestors.

7 Genome Doubling in Yeast

Wolfe and Shields [10] discovered an ancient genome doubling in the ancestry of
Saccharomyces cerevisiae in 1997 after this organism became the first to have its
genome sequenced [7]. According to [8], the recently sequenced Candida glabrata
[4] shares this doubled ancestor. We extracted data from YGOB (Yeast Genome
Browser) [3], on the orders and orientation of the exactly 600 genes identified as
duplicates in both genomes, i.e., 300 duplicated genes.

We were able to obtain information from YGOB about which of the two
duplicates in one genome is orthologous to which duplicate in the other genome.
This is essential to the algorithm in Section 5.2. In general, we would have to
infer this information through sequence comparison methods. This question is
not pertinent to the algorithm in Section 5.3.

Though the results of the algorithm in Section 2 suggests that the theory in
[8] is the most parsimonious, there is still enough uncertainty in yeast phyloge-
netics and enough independent occurrences of genome doubling, that it is worth
comparing the results of our two methods to dispute or confirm the common
doubled ancestor hypothesis. In Fig. 5 we compare the analysis in the left hand
diagram with that in the right, on the yeast data and on data of approximately
the same size generated first according to the doubling first model and then
according to speciation first.

We first analyzed the yeast data using the doubling first and speciation first
algorithms. The results appear in the centre row of Table 1. (Because of the
asymmetry of the doubling first algorithm with respect to T and U , there are
two sets of inferences for this case.) We then used the numbers of rearrange-
ments inferred for yeast, using the same number of markers and chromosomes,
to simulate the same number of rearrangements in a random model, both with
doubling first and speciation first.

We then applied both algorithms, doubling first and speciation first, to both
sets of data. Note first in Table 1 that the number of rearrangements inferred
for the doubling first model using the doubling first algorithm is not exactly the
same as that used to generate the data, and likewise for the speciation first case.
This is normal, because the inference of rearrangements often is more economical
than the rearrangements actually used.

The rows in Table 1 show that the doubling first analysis is better than
the speciation first analysis (457 rearrangements versus 632) when the data are
generated by doubling first, whereas the speciation first analysis is better (589
versus 604) when the data is generated with speciation first. The doubling first
analysis clearly accounts better for the yeast data (505-521 versus 622), while
the simulations assure that the biases in the two methods cannot be invoked, so
our analysis confirms the hypothesis in [8].

Parts of the Problem of Polyploids in Rearrangement Phylogeny 175

Table 1. Doubling first (d.f) and speciation first (s.f.) analyses each produce a more
parsimonious analysis of simulations produced by the corresponding model (d.f. or s.f.,
respectively). Averages of at least five simulations shown, but the effect holds for each
simulation individually. The d.f. analysis gives a far better fit to the yeast data than
s.f. Second yeast row reverses the roles of U and T in the algorithm.

analysis→ doubling first (d.f.) speciation first (s.f.)

data source↓ d(T, V) d(V, U) d(V, A ⊕ A) total d(T, A ⊕ A) d(A, B) d(U, B ⊕ B) total

sim by d.f.: 102 213 166 481
inferred: 119 181 157 457 214 163 255 632

yeast: 92 245 168 505 193 179 250 622
122 215 184 521

sim by s.f.: 177 164 225 566
inferred: 146 354 104 604 164 228 197 589

8 Conclusions

Our previous work on integrating genome halving and other algorithms as a way
of incorporating polyploids into rearrangement phylogeny used this software “off
the shelf”, searching all the many alternate outputs from one as inputs to the
other. In the present paper we have avoided an exhaustive search strategy by
intervening at the choice points in the genomic distance algorithm in the case of
the doubling first problem and in the genome halving algorithm in the case of
the speciation first problems. We have shown that these heuristics increase the
efficiency of the search and to provide better upper bounds.

The main difficulty in this problem area remains the great multiplicity of
solutions to the halving problem. Though this was only encountered here in
the speciation first problem, leading to a overestimation of the inter-ancestor
distance, it will also have to be dealt with in the doubling first scenario, when
the inferred ancestor has to be integrated into a larger phylogenetic tree and
compared to other doubled or unduplicated genomes, as in [11] and [9].

References

1. Bergeron, A., Mixtacki, J., Stoye, J.: A unifying view of genome rearrangements.
In: Bücher, P., Moret, B.M.E. (eds.) WABI 2006. LNCS (LNBI), vol. 4175, pp.
163–173. Springer, Heidelberg (2006)

2. Bourque, G., Pevzner, P.: Genome-scale evolution: Reconstructing gene orders in
the ancestral species. Genome Research 12, 26–36 (2002)

3. Byrne, K.P., Wolfe, K.H.: The Yeast Gene Order Browser: combining curated ho-
mology and syntenic context reveals gene fate in polyploid species. Genome Re-
search 15, 1456–1461 (2005)

4. Dujon, B., Sherman, D., Fischer, G., et al.: Genome evolution in yeasts. Nature 430,
35–44 (2004)

5. El-Mabrouk, N., Sankoff, D.: Hybridization and genome rearrangement. In:
Crochemore, M., Paterson, M.S. (eds.) Combinatorial Pattern Matching. LNCS,
vol. 1645, pp. 78–87. Springer, Heidelberg (1999)

176 C. Zheng, Q. Zhu, and D. Sankoff

6. El-Mabrouk, N., Sankoff, D.: The reconstruction of doubled genomes. SIAM Jour-
nal on Computing 32, 754–792 (2003)

7. Goffeau, A., Barrell, B.G., Bussey, H., et al.: Life with 6000 genes. Science 275,
1051–1052 (1996)

8. Kurtzman, C.P., Robnett, C.J.: Phylogenetic relationships among yeasts of the Sac-
charomyces complex determined from multigene sequence analyses. FEMS Yeast
Research 3, 417–432 (2003)

9. Sankoff, D., Zheng, C., Zhu, Q.: Polyploids, genome halving and phylogeny. Ac-
cepted for ISMB (2007)

10. Wolfe, K.H., Shields, D.C.: Molecular evidence for an ancient duplication of the
entire yeast genome. Nature 387, 708–713 (1997)

11. Zheng, C., Zhu, Q., Sankoff, D.: Genome halving with an outgroup. Evolutionary
Bioinformatics 2, 319–326 (2006)

A Rigorous Analysis of the Pattern of Intron

Conservation Supports the Coelomata Clade of
Animals

Jie Zheng, Igor B. Rogozin, Eugene V. Koonin�, and Teresa M. Przytycka�

National Center for Biotechnology Information, National Library of Medicine
National Institutes of Health, Bethesda, MD 20894, USA
{zhengj,rogozin,koonin,przytyck}@ncbi.nlm.nih.gov

Abstract. Many intron positions are conserved in varying subsets of eu-
karyotic genomes and, consequently, comprise a potentially informative
class of phylogenetic characters. Roy and Gilbert developed a method of
phylogenetic reconstruction using the patterns of intron presence-absence
in eukaryotic genes and, applying this method to the analysis of animal
phylogeny, obtained support for an Ecdysozoa clade ([1]). The critical as-
sumption in the method was the independence of the rates of intron loss
in different branches of the phylogenetic. Here, this assumption is refuted
by showing that the branch-specific intron loss rates are strongly corre-
lated. We show that different tree topologies are obtained, in each case
with a significant statistical support, when different subsets of intron
positions are analyzed. The analysis of the conserved intron positions
supports the Coelomata topology, i.e., a clade comprised of arthropods
and chordates, whereas the analysis of more variable intron positions fa-
vors the Ecdysozoa topology, i.e., a clade of arthropods and nematodes.
We show, however, that the support for Ecdysozoa is fully explained by
parallel loss of introns in nematodes and arthropods, a factor that does
not contribute to the analysis of the conserved introns. The developed
procedure for the identification and analysis of conserved introns and
other characters with minimal or no homoplasy is expected to be useful
for resolving many hard phylogenetic problems.

1 Introduction

Traditionally, molecular phylogenetics operates with alignments of homologous
nucleotide or protein sequences that are used as the input for phylogenetic tree
construction with one or another of the enormous variety of the available meth-
ods ([2]). Sequencing of numerous genomes from diverse taxa enabled the ex-
tension of phylogenetic analysis to the whole genome scale. Most often, this
involves construction of phylogenetic trees from concatenated alignments of nu-
merous genes or combination of numerous trees for individual gene sets into
a supertree, but characters that can be properly denoted as genomic, such as

� Corresponding authors.

G. Tesler and D. Durand (Eds.): RECOMB-CG 2007, LNBI 4751, pp. 177–191, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

178 J. Zheng et al.

gene composition, gene order, and protein domain combinations, have been em-
ployed as well ([3,4,5,6]). Methodologically, perhaps, the most promising category
of genomic characters are rare genomic changes (RGCs) that represent, essen-
tially, the genomic version of shared derived characters (“Hennigian” markers)
([7,8,9,10]). Insertion and deletion (gain and loss) of introns in protein-coding
genes during the evolution of eukaryotes has been proposed as a promising class
of RGCs ([8]). Indeed, positions in eukaryotic genes appear to be an attractive
substrate for phylogenetic analysis because introns are extremely numerous, the
positions of many but by no means all introns are conserved even between very
distant eukaryotic taxa ([11,12]), and independent gain of introns in the same
position in different lineages, which would lead to homoplasy, appears to be rare
([13]). Despite these potential advantages of intron positions as phylogenetic
characters, there is a severe problem that complicates this approach, namely,
the extensive parallel loss of introns in different lineages which leads to gross
distortions of phylogenetic trees constructed on the basis of alignments of intron
positions ([12]). To overcome this problem, Roy and Gilbert devised a statistical
approach aimed at distinguishing between alternative phylogenetic hypotheses
by comparing patterns of intron conservation ([1]).

Roy and Gilbert applied their method to the same set of alignments of intron
positions that was previously analyzed by Rogozin et al. ([12]) and addressed
one of the most debated, persistent problems in the large-scale animal phylogeny,
namely, the controversy surrounding the Coelomata and Ecdysozoa topologies of
the phylogenetic tree of animals. The “textbook” tree topology, originally stem-
ming from comparative anatomy, includes a clade of animals that possess a true
body cavity (coelomates, such as arthropods and chordates), whereas animals
that have a pseudocoelome, such as nematodes, and those without a coelome,
such as flatworms, occupy more basal positions in the tree (e.g., ([14,15]). The
Coelomata topology appears “natural” from the viewpoint of straightforward
and intuitive concept of the hierarchy of morphological and physiological com-
plexity among animals, which is the main reason why this phylogeny had been
accepted since the work of Haeckel ([16]). The first molecular phylogenetic analy-
ses of 18S rRNA supported the Coelomata clade ([17,18]). However, in a seminal
1997 study, Lake and coworkers reported a new phylogenetic analysis of 18S
rRNAs from a much larger set of animal species and arrived at an alternative
tree topology that clustered arthropods and nematodes in a clade of molting
animals termed Ecdysozoa ([19]).

The Ecdysozoa topology was recovered only when certain, apparently, slowly-
evolving species of nematodes were included in the analyzed sample. Accordingly,
it has been proposed that the coelomata topology is an artifact caused by long-
branch attraction (LBA) ([19,20]) which is one of the most common artifacts of
phylogenetic analysis ([21,22,23]). Specifically, the purported LBA has been at-
tributed to the inclusion of fast-evolving species, such as nematodes of the genus
Caenorhabditis. The ecdysozoan topology received additional support from the
results of an independent phylogenetic analysis of 18S RNA ([24,25]), combined
analysis of 18S and 28S rRNA sequences ([26]), and some protein phylogenies,

A Rigorous Analysis of the Pattern of Intron Conservation 179

such as those for Hox proteins ([27]). Furthermore, an apparent derived shared
character of the Ecdysozoan clade has been identified, a distinct, multimeric
form of β-thymosin ([28]).

Being compatible with the interpretation of molting as a fundamental develop-
mental feature, the ecdysozoa topology has been rapidly and nearly universally ac-
cepted in the evo-devo community ([29,30,31,32]). However, phylogenetic analyses
ofmultiple sets of orthologousproteins reopened the Coelomata-Ecdysozoaconun-
drum by consistently supporting the Coelomata topology ([33,34,35]). Both Blair
et al. and Wolf et al. assessed the potential effect of branch length on the tree topol-
ogy and concluded that the observed support for the Coelomata topology could not
stem from LBA ([34,35]). Trees constructed by using non-sequence-based criteria,
such as gene content and multidomain protein composition also supported Coelo-
mata ([35]). Subsequently, the Coelomata topology received further support from
several independent phylogenetic studies ([36,37,38,39]). In addition, the status of
themultimericβ-thymosin as a derived shared character supporting theEcdysozoa
hasbeenput intodoubtas a resultof the comparative analysisof recently sequenced
genomes ([40]).

These reports have prompted further re-analyses including large-scale
maximum-likelihood phylogenetic analysis of multiple genes from an extended
range of animal species ([41,42,23]), putative derived characters, such as shared
orthologs and domain combinations ([43]), and patterns of intron conservation
in the aforementioned study of Roy and Gilbert ([1]). All these studies provided
support for the Ecdysozoa topology suggesting, once again, that the coelomate
topology was an LBA artefact, caused, largely, by inadequate taxon sampling
and also, possibly, by the use of over-simplified models of sequence evolution
([41,23,44]).

Given the multiple reports in support for each of the alternative tree topolo-
gies, the Coelomata-Ecdysozoa dilemma is often considered unresolved, and ac-
cordingly, the metazoan tree is presented as a multifurcation ([45,46,47]). Very
recently, we reexamined the problem using a new class of RGCs that include
lineage specific replacements of amino acids that are, otherwise, conserved in a
broad range of taxa and require two or three nucleotide substitutions; this study
provided a strong support for the Coelomata topology ([48]).

In a different study, a graph-theoretical method for identifying unstable phy-
logenetic characters recently developed by one of us was applied to remove, from
intron position data, those positions that were found to be prone to multiple in-
tron losses or independent gains. Phylogenetic analysis of the remaining intron
positions strongly supported the Coelomata topology ([49]).

These findings prompted us to re-examine, in detail, the use of intron posi-
tion conservation to infer the animal phylogeny. The central assumption of the
method developed by Roy et al. is that the probability of retention of a given
intron in the given branch can be modeled by a memory-less Markov process
([1]). Specifically, the probability of retaining an intron along any tree branch
is assumed to depend on the branch but not on the retention history of a given
intron in other branches of the tree. Nguyen et al. relied on the same assumption

180 J. Zheng et al.

in their maximum-likelihood analysis of evolution of intron positions and, sim-
ilarly, obtained support for the Ecdysozoa topology ([50]). Here we refute this
assumption and demonstrate that an intron is more likely to be retained along
a particular branch if it is also retained in other branches. Thus, it appears that
introns are inherently more stable during evolution in some positions than in
others, in an obvious parallel with different sites in proteins. Although the ob-
served dependence of the retention probability on intron conservation in different
branches invalidates the argument by Roy et al., it does not necessarily mean
that data on intron presence-absence could not be used to infer phylogenies.

First, we evaluated whether the topology of the resulting tree depends on
the level of intron conservation by partitioning the patterns of intron presence-
absence into conserved and variable subsets. The analysis of the conserved intron
set strongly supports the Coelomata phylogeny, in a direct contradiction with
the conclusions of Roy and Gilbert, whereas the analysis of the variable introns
yields the Ecdysozoa topology. It seems plausible that variable characters (intron
positions, in this case) produce an incorrect tree due to long branch attraction.
We rigorously show that, in a test of phylogenetic hypotheses with 5 taxa, the
outcome is unaffected by parallel losses for characters that are conserved in three
or four taxa, but is dramatically biased by parallel losses for characters that are
present in only two taxa. In the context of the present study, this means that, if
the analysis of the conserved intron set correctly yields the Coelomata topology,
then, the Ecdysozoa topology is observed with the variable set due to parallel
intron losses (homoplasy). We also present two additional, independent, formal
arguments in support of the Coelomata topology.

2 Materials and Methods

Data set. Thedata set analyzedhere is an extension of thepreviouslydescribed, cu-
rated set of conserved eukaryotic genes in which intron positions were mapped onto
protein sequence alignments ([12]). In addition to the originally analyzed 8 species,
namely, Anopheles gambiae (Ag), Arabidopsis thaliana (At), Caenorhabidits ele-
gans (Ce), Drosophila melanogaster (Dm), Homo sapiens (Hs), Plasmodium falci-
parum (Pf), Saccharomyces cerevisiae (Sc), and Schizosaccharomyces pombe (Sp),
two intron-rich fungi, Aspergillus fumigatus (Af) and Cryptococcus neoformans
(Cn), and one Apicomplexan, Theileria parva (Tp), were included. The analyzed
data set consists of 585 genes.

Each intron position corresponds to a binary string, where each bit (0 or 1)
corresponds to a species and indicates whether an intron is present or absent
at the given position of that species. We call such binary strings “patterns”.
To merge multiple species into one group, the bits of the merged species were
replaced by a single bit that was 1 if any of the replaced bits was 1, and 0
otherwise. In the analysis, each pattern is a 5-bit string, including 4 animals and
one outgroup (which in some cases consisted of several species). In our analysis,
we considered three outgroups: Out 1 - Arabidopsis (At), Out 2 - four fungal
species (Af, Cn, Sp, Sc), and Out 3 - all non-animal species in the data set (At,

A Rigorous Analysis of the Pattern of Intron Conservation 181

Af, Cn, Sp, Sc, Tp, Pf). In the main body of the paper, we present the results
for the largest outgourp (Out 3) as it provides the most robust data. The results
for the other outgroups are presented in the Supplementary Materials.

For brevity, we usually refer to an intron position as an “intron”, and when
there is an intron in that position of a species, it is said that the intron occurs in
that species. An intron position is considered conserved in two or more species
if the intron occurs between two aligning bases in the alignment of the coding
sequences. An intron occurs in a group if it occurs in any species of that group.
To be informative for phylogenetic analysis, an intron must occur in at least two
groups. This intron set was partitioned into conserved and variable subsets. The
former subset consists of introns that occur in at least three groups, and the
latter subset consists of the introns that occur in only two groups. The numbers
of introns in the conserved and variable subsets are shown in Table 1.

Intron retention rates. The notations for comparison of retention rates are
adopted from ([1]). Let A stand for arthropods (Dm and Ag), D for deuteros-
tomes (Hs), N for nematodes (Ce), and O for outgroup. Then, ANO is the
number of introns present in A, N, and O but absent in D, and ADON is the
number of introns present in all four taxa. The retention rate is the ratio of
introns present in a taxon to the number of introns that are absent (in the ana-
lyzed positions). For example, on the Coelomata phylogeny, for introns present
in D and O, ADO/DO is the ratio of the number of introns retained along the
branch A to the number of introns lost; similarly, ADON/DON is the retention
rate in branch A for the introns that are also present in N. The p-values are the
probabilities that the two ratios are equal, calculated using Fisher’s exact test.

Dollo parsimony analysis of intron conservation patterns. Phylogenetic analysis
of intron conservation patterns was performed using the Dollo parsimony method
([51,52]) which was applied either to all introns, or separately to the conserved
and variable subsets using the Dolpenny program of the Phylip package ([53])
with default settings. For this analysis, the arthropods were split into two taxa,
Dm and Ag, because conserved introns (those that occur in in more than two
taxa) cannot resolve phylogenies for four taxa.

Table 1. The conserved and variable introns in the analyzed gene set, depending on
the outgroup

Outgroup Total # # variable # conserved # genes containing at least
of introns introns introns one conserved intron

Out 11 1372 939 433 216

Out 22 1394 925 469 212

Out 33 1745 1203 542 242

1 Arabidopsis (At)
2 Fungal species (Af, Cn, Sp, Sc)
3 All non-animal species in the data set (At, Af, Cn, Sp, Sc, Tp, Pf)

182 J. Zheng et al.

The statistical significance of the results was assessed using the winning sites
test ([54]) as follows. For each intron, the minimum numbers of losses in the
Ecdysozoa tree (E) and the Coelomata tree (C) was calculated, allowing for
one gain only (the assumption of Dollo parsimony). If E = C, the intron is
uninformative with respect to the support for one or the other topology and is
discarded from the analysis; if E > C, the given intron supports Coelomata, and
if E < C, the intron supports Ecdysozoa. Since, as observed from the data, for
any intron, |E − C| ≤ 1, the numbers of introns that favor each topology reflect
the signals of dollo parsimony. The null hypothesis is that the probability that
an intron favors Coelomata or Ecdysozoa is equal to 0.5. Using the binomial
distribution, the p-value of a topology was calculated as the probability that at
least the observed number of introns favor that topology. It should be noted, for
clarity, that introns that are shared by two sister species cannot provide support
for any hypothesis and are uninformative.

3 Results

3.1 The Dependence of Intron Loss Rate in a Branch on Intron
Conservation in Other Branches

The central assumption of Roy and Gilbert’s method ([1]) is that the probability
of retention of a given intron in one branch can be modeled by a memory-less
Markov process. Specifically, the probability of retaining an intron along any
tree branch is assumed to depend on the branch but not on the retention history
of the intron in the given position in other branches of the tree. Here, we refute
this hypothesis and demonstrate that an intron in a given position is more likely
to be retained along a particular branch if it is also retained in other branches.

We tested the null hypothesis that intron retention rate at any given tree
branch is independent on whether or not the intron in the given position is
retained in other (independent) branches of the tree. The hypothesis was tested
for each of the two alternative topologies of the animal tree, Coelomata and

(i) for Coelomata:
rA/(1− rA) = ADO/DO = ADON/DON
rD/(1− rD) = ADO/AO = ADON/AON

(ii) for Ecdysozoa:
rA/(1− rA) = ANO/NO = ANOD/NOD
rN/(1−rN) = ANO/AO = ANOD/AOD

A

X

O

rA

D

N

rD

Coelomata

A N

X

O

rA

D

rN

Ecdysozoa

Fig. 1. Testing the independence of intron loss in different branches

A Rigorous Analysis of the Pattern of Intron Conservation 183

Ecdysozoa. Let X be the common ancestor of Arthropods and Nematodes (for
the Ecdysozoa tree) or Arthropods and Deuterostomes (for the Coelomata tree).
Consider introns that are present in the out-group (O) and in at least one child
of X. Under the assumption that the introns in the same position are orthologous
(no convergent intron gain), such an intron must be present also in the node X
but may or may not be present in D (for Ecdysozoa) or N (for Coelomata). We
test the null hypothesis that the retention rates rA, rN and rD (as appropriate
for the corresponding tree topology) do not depend on whether or not the intron
was retained in D (for Ecdysozoa) or N (for Coelomata) (Figure 1). If a lineage
is represented by more than one species, the presence of the intron in any of
these species implies that the intron is present at the root of the lineage. Then,
testing the null hypothesis reduces to testing the equalities in Figure 1.

For the Ecdysozoa and Coelomata tree topologies, the null hypothesis is that
the intron retention rates along the edges descending from the node X (rA and
either rN or rD, depending on the topology) is independent on whether the
intron in the given position is also retained in D (for Ecdysozoa) or in N (for
Coelomata).

The results for the largest outgroup (Out 3) are presented in Table 2. The
results obtained with other outgroups are consistent with those in Table 2 (Sup-
plementary Table S1 and Table S2). The null hypothesis consistently fails the
Fisher’s exact test, regardless of whether the Coelomata or the Ecdysozoa hy-
pothesis is assumed. The difference in intron retention rates depending on the
retention in other branches was not only statistically significant but, at least
with some outgroups, quite dramatic. For example, for the Ecdysozoa topology
and with the largest, group Out 3 (all non-animal species) as the outgroup, the
retention rate of introns present in the deuterostomes was ∼0.43 whereas the
corresponding retention rate for introns missing in the deuterostomes was only
∼0.15 (Table 2). Thus, the hypothesis that the probability of retaining an intron
present in an ancestral node does not depend on the retention of this intron in
other, independent branches of the tree is unequivocally rejected.

Table 2. Testing the dependence of intron retention on conservation in other branches,
for Out 3

Ecdysozoa

Non-conserved in D Conserved in D p-value in Fisher
ANO/NO ANOD/NOD test

rA/(1 − rA) 11/85 100/146 8.01e-8

ANO/AO ANOD/AOD

rN/(1 − rN) 11/62 100/131 6.67e-6

Coelomata

Non-conserved in N Conserved in N p-value in Fisher
ADO/DO ADON/DON test

rA/(1 − rA) 131/711 100/146 1.08e-15

ADO/AO ADON/AON

rD/(1 − rD) 131/62 100/11 6.67e-6

184 J. Zheng et al.

3.2 Parsimony Analysis of Conserved Introns Supports the
Coelomata Topology

Having shown that intron loss probability in a particular position critically de-
pends on the state of that position in other branches, we reasoned that parallel
loss that would distort the results of phylogenetic tree reconstruction is expected
to be much more common among poorly conserved introns than among highly
conserved ones. To examine the possible effect of intron conservation on the re-
sults of tree construction with the Dollo parsimony method, we analyzed trees
for five species from the taxa of interest [Dm and Ag (Arthropods), Ce (Nema-
todes), Hs (Deuterostomes)], and an outgroup. We define variable introns as the
introns that are present in two groups only. Conserved introns are defined as
the introns that are present in at least tree groups. (For this analysis, 5 groups
are required because, otherwise, the tree would be unresolved; therefore, it was
necessary to treat the two Arthropod species as separate groups). The results
for various choices of outgroup are shown in Supplementary Table S3. We call an
intron position informative if the number of losses of the intron in this position
differs between the Ecdysozoa and Coelomata tree topologies. The distribution
of introns in informative positions provides support for one of the two trees.

We found that conserved introns consistently and highly significantly sup-
ported the Coelomata topology whereas variable introns yielded the Ecdysozoa
tree. Given that variable introns substantially outnumber conserved introns, it
is not surprising that the tree constructed using all introns is consistent with
the Ecdysozoa topology (Supplementary Table S3). We repeated this analysis
for other permutations of species replacing human by see urchin and one of the
insects by bee and obtained consistent results.

3.3 Three Additional Tests to Resolve the Coelomata/Ecdysozoa
Dilemma

We demonstrated that the Dollo parsimony tree constructed using conserved
introns is consistent with the Coelomata hypothesis whereas the variable introns
(and all introns, given that the variable introns comprise a substantial majority)
supported the Ecdysozoa topology. Intuitively, it seems likely that the variable
introns produce an erroneous result due to parallel losses in different branches.
Nevertheless, we sought for specific, quantitative tests to distinguish between
the two topologies. Three independent tests were developed, each based on a
specific assumption about the evolutionary model. Since such models inevitably
involve some level of simplification with respect to the true evolutionary scenario,
we consider several increasingly more realistic assumptions. A corollary of the
first test is that, if the Coelomata tree is correct, then, the fact that the tree
obtained with variable (and with the full) set of introns displays the Ecdysozoa
topology is a result of parallel intron losses. Taken together, the results of the
tests described below not only lend strong support to the Coelomata topology
but, through the above corollary, prove that the analysis of the unfiltered data
leads to an incorrect tree due to parallel intron losses (a form of homoplasy).

A Rigorous Analysis of the Pattern of Intron Conservation 185

Here we provide only the basic outline of the arguments; the complete description
is provided in the Supplementary Materials.

Test 1. Assumptions: The argument is developed under the assumption of Dollo
parsimony, i.e., irreversibility of intron loss. However, it also holds for the more
general parsimony model where losses are treated as reversible (i.e., a loss and
an independent gain of an intron occurring in the same position) as long as all
character changes are weighted equally.

Argument outline: First, we rule out parallel loses (or independent gains) as
a possible explanation of the tree topology obtained with conserved introns.
Namely we show that none of the informative conserved introns could have un-
dergone parallel losses, regardless of the tree topology (Coelomata or Ecdysozoa).
In contrast, every informative variable intron has two parallel losses in one tree.
Thus under the assumption that the tree obtained with conserved introns is cor-
rect, the inconsistency between this tree and the tree computed with variable
introns is due to homoplasy.

This argument holds for any set of five taxa and any set of characters as
long as the goal is to differentiate between two pre-defined tree topologies, such
as Coelomata and Ecdysozoa. Thus, this approach resolves the discrepancy be-
tween the results obtained for a conserved set of characters and a variable set of
characters in favor of the result obtained with the conserved characters as long,
of course, as the number of such characters is sufficient to obtain statistically
significant results.

Assumptions and simplifications: The argument holds independently of the as-
sumption of character loss irreversibility (Dollo parsimony). However, it relies
on the assumption that all changes have the same cost. This is an oversimpli-
fication, and a more realistic scenario should account for the different costs of
intron loss in different branches. The second test we developed takes this into
consideration.

Test 2. Assumptions: Intron loss is assumed to be irreversible. Assume that
the cost of intron loss in the human branch and the C. elegans branch are
different. (We can also associate weights with intron loss in other species but
this is irrelevant for the argument). Let dH and dC be the costs of intron loss in
the human branch and the C. elegans branch, respectively. Then, the phylogeny
is constructed under a variant of the Dollo parsimony model where each loss is
scored according to its assigned weight. Because, under parsimony, no a priori
knowledge of the lengths of the internal edges is assumed, the costs of intron loss
are assumed to be equal for all internal branches. Additionally, it is assumed that
the ratio of the costs of loss between the variable and conserved sets of introns is
approximately the same for the human and C. elegans branches. Since it is known
that introns are lost on a massive scale in C.elegans but are highly conserved in
humans ([55,56,57]), we assume dH/dC > 1.

Argument outline: We observe that the value of dH/dC affects the result of the
Dollo parsimony reconstruction and we ask whether it is possible to set this

186 J. Zheng et al.

out Ce

Ho Dr+An

out Ce

Ho Dr+An

out Ce

Ho Dr+An

Ecdysozoa Equilibrium Coleomata

dH/dC = 1

dH/dC = 1

variable introns

conserved
introns

dH/dC = 9.3

dH/dC = 11.3

dH/dC
9.3 11.31

Coleomata

Coleomata Ecdysozoa

Ecdysozoavariable

conserved

Fig. 2. The dependence of the tree topology on the dH/dC ratio. For the variable
introns, dH/dC = 1 results in the Ecdysozoa tree and changes to the Coelomata tree for
dH/dC > 9.3. For the conserved introns, dH/dC = 1 results in the Coelomata tree and
changes to the Ecdysozoa tree for dH/dC > 11.3. For the interval 9.3 < dH/dC < 11.3,
the trees obtained from both sets agree on the Coelomata topology.

ratio so that conserved and variable introns produce the same tree. For each
of the two sets of introns (the conserved and the variable ones), there exists an
equilibrium value dH/dC where the Coelomata tree and the Ecdysozoa tree have
the same cost (Figure 2). These equilibrium values can be computed directly from
the frequencies of intron patterns (Table S4 and Table S5 in the Supplementary
Material) as described in Supplementary Material. Using the data from the most
robust outgroup, out3; we show that there exists an interval of the dH/dC ratio
(9.3 < dH/dC < 11.3) for which both sets of introns (conserved and variable)
produce the same tree and this tree has the Coelomata topology.

Possible shortcomings of the assumptions: In this argument, the cost of intron
loss varies between species but the cost of intron loss in all internal branches is
assumed to be the same. This oversimplification is removed in the next test.

Test 3. Assumption: For this test, intron loss is assumed to be irreversible but
there are no constraints on the relation between the retention rates in different

A Rigorous Analysis of the Pattern of Intron Conservation 187

tree branches. It is expected that the retention rates. i.e., the ratio of the number
of retained introns to the number of introns that were lost along a given branch,
are higher for conserved than for variable introns.

Argument: We tested whether this expectation was violated under either of the
two compared animal tree topologies. The retention rates were computed, un-
der the Dollo parsimony assumption, for conserved and variable introns under
the Coelomata and Ecdysozoa topologies (Supplementary Material, Table S6).
For the Coelomata topology, the variable introns show a lower than or, approxi-
mately, the same retention rate as the conserved introns. By contrast, under the
Ecdysozoa topology, the retention rate along the C. elegans branch was signifi-
cantly greater for the variable introns than for the conserved introns (p < 0.02,
one-sided Fisher test). This is the only significant deviation from the expectation
regarding the retention rates that we observed, and it is seen in the Ecdysozoa
tree. Thus, the test results support the Coelomata topology.

4 Discussion and Conclusions

Intron positions appear to be attractive candidates for the role of RGCs because
eukaryotic genes contain numerous introns, thus, providing for statistically pow-
erful phylogenetic tests and also because parallel gains of introns are rare ([13]).
However, parallel intron losses in the same position are much more common and
complicate phylogenetic analysis through the attraction of branches with high
intron loss rates (a version of LBA). Roy and Gilbert as well as Nguyen et al.
developed a method of phylogenetic reconstruction that overcame the problem
of parallel losses but only under the assumption that the loss rates in differ-
ent branches of the tree are independent; the application of this method to the
animal phylogeny supported the existence of the Ecdysozoa clade ([1]). Here,
we show that the independence assumption is invalid, i.e., the loss rates in dif-
ferent branches are strongly correlated. The outcome of phylogenetic analysis
critically depends on the subset of intron positions that are used as the input.
We show that, when exactly 5 taxa are used for phylogenetic analysis, for the
introns that are conserved in three or four taxa, there are no parallel losses in
informative positions, so the correct phylogeny is recovered so long as the as-
sumption of the irreversibility of intron loss (no parallel gains) holds, at least,
approximately, and the number of informative positions is sufficient to make the
analysis statistically valid. In the specific case of animal phylogeny examined
here, the analysis of such conserved introns strongly supports the Coelomata
topology. By contrast, the analysis of variable introns (those represented in two
taxa only) supports the Ecdysozoa topology, and because there are many more
variable introns than conserved ones, the Ecdysozoa topology is recovered also
when the entire set of introns is analyzed, in agreement with the observations of
Roy and Gilbert ([1]). However, we proved that, if the topology obtained with
the set of conserved introns (Coelomata) is valid, the recovery of the alternative
topology (Ecdysozoa) is explained by parallel losses, in this case, in nematodes
and insects.

188 J. Zheng et al.

With the results presented here, it appears that all tested RGCs including pro-
teindomaincombinations ([35]), two-substitution replacementsofhighlyconserved
amino acids ([48]), and now intron positions support the Coelomata topology of the
animal tree and reject the Ecdysozoa topology. However, some alternative analy-
ses of RGCs ([43]) and several sequence-based phylogenetic studies employing ex-
tensive taxon sampling and sophisticatedmodels of sequence evolution ([41,23,44])
support theEcdysozoaandsuggest that theCoelomata topology is anLBAartifact.
This interpretation does not apply to our results obtained with the set of conserved
introns; moreover,we specifically show that, when intron positions are used as phy-
logenetic characters, exactly the opposite is true, i.e., it is the Ecdysozoa topology
that is produced as a result of LBA (extensive parallel loss of introns in arthropods
and nematodes). The definitive resolution of the Coelomata-Ecdysozoa dilemma
will require phylogenetic analysis of many more genomes from different branches of
animals and reconciliation of the results obtained with various types of RGCs with
the results of sequence-based phylogenetics.

The phylogenetic methodology described here, in principle, can be applied not
only to introns but to any binary characters that meet the assumption of the
irreversibility of losses that is required for the use of Dollo parsimony. Previously,
attempts have been made to increase the accuracy of sequence-based phylogenies
by limiting the analysis to slowly evolving positions in multiple alignments of
protein and rRNA sequences, on the premise that such positions are the ones
that are least prone to homoplasy ([58,59,60]). However, in this case, homoplasy
could only be reduced by an uncertain amount, and there was the inevitable
trade-off between the selection of increasingly conserved (presumably, increas-
ingly homoplasy-free) positions and the loss of statistical power. The latter issue
is pertinent also for the method described here, but at least in the present case
study, the number of conserved introns, although a minority, was amply sufficient
to allow an unequivocal discrimination between the two competing hypotheses.
Moreover, applying this method to 5 taxa and using Dollo parsimony allows one
not only to reduce but, actually, to eliminate a certain type of homoplasy. There-
fore, the method is expected to be useful for resolving many hard phylogenetic
problems.

Acknowledgments

This research was supported by the Intramural Research Program of the NIH,
National Library of Medicine. The authors would like to thank Yuri I. Wolf for
valuable discussions.

Supplementary Material

http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/Coelomata/
intron07 som.doc

http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/Coelomata/intron07_som.doc
http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/Coelomata/intron07_som.doc

A Rigorous Analysis of the Pattern of Intron Conservation 189

References

1. Roy, S.W., Gilbert, W.: Resolution of a deep animal divergence by the pattern of
intron conservation. Proc. Natl. Acad. Sci. U S A 102, 4403–4408 (2005)

2. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland, MA (2004)

3. Snel, B., Bork, P., Huynen, M.A.: Genome phylogeny based on gene content. Nat.
Genet. 21, 108–110 (1999)

4. Wolf, Y.I., Rogozin, I.B., Grishin, N.V., Tatusov, R.L., Koonin, E.V.: Genome trees
constructed using five different approaches suggest new major bacterial clades.
BMC Evolutionary Biology. 1 (2001)

5. Wolf, Y.I., Rogozin, I.B., Grishin, N.V., Koonin, E.V.: Genome trees and the tree
of life. Trends Genet. 18, 472–479 (2002)

6. Snel, B., Huynen, M.A., Dutilh, B.E.: Genome trees and the nature of genome
evolution. Annu. Rev. Microbiol. 59, 191–209 (2005)

7. Rokas, A., Holland, P.W.: Rare genomic changes as a tool for phylogenetics. Trends
in Ecology and Evolution 15, 454–459 (2000)

8. Nei, M., Kumar, S.: Molecular Evolution and Phylogenetics. Oxford Univ, Oxford
(2001)

9. Delsuc, F., Brinkmann, H., Philippe, H.: Phylogenomics and the reconstruction of
the tree of life. Nat. Rev. Genet. 6, 361–375 (2005)

10. Boore, J.L.: The use of genome-level characters for phylogenetic reconstruction.
Trends Ecol. Evol. 21, 439–446 (2006)

11. Fedorov, A., Merican, A.F., Gilbert, W.: Large-scale comparison of intron positions
among animal, plant, and fungal genes. Proc. Natl. Acad. Sci. U S A 99, 16128–
16133 (2002)

12. Rogozin, I.B., Wolf, Y.I., Sorokin, A.V., Mirkin, B.G., Koonin, E.V.: Remarkable
interkingdom conservation of intron positions and massive, lineage-specific intron
loss and gain in eukaryotic evolution. Curr. Biol. 13, 1512–1517 (2003)

13. Sverdlov, A.V., Rogozin, I.B., Babenko, V.N., Koonin, E.V.: Conservation versus
parallel gains in intron evolution. Nucleic Acids Res. 33, 1741–1748 (2005)

14. Brusca, R.C., Brusca, G.J.: Invertebrates. Sinauer Associates, Sunderland, Mass
(1990)

15. Raff, R.A: The Shape of Life: Genes, Development, and the Evolution of Animal
Form. University of Chicago Press, Chicago, IL (1996)

16. Haeckel, E.: Generelle Morphologie der Organismen. G.Reimer, Berlin (1866)

17. Field, K.G., Olsen, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.T., Raff, E.C.,
Pace, N.R., Raff, R.A.: Molecular phylogeny of the animal kingdom. Science 239,
748–753 (1988)

18. Turbeville, J.M., Pfeifer, D.M., Field, K.G., Raff, R.A.: The phylogenetic status of
arthropods, as inferred from 18s rrna sequences. Mol. Biol. Evol. 8, 669–686 (1991)

19. Aguinaldo, A.M., Turbeville, J.M., Linford, L.S., Rivera, M.C., Garey, J.R., Raff,
R.A., Lake, J.A.: Evidence for a clade of nematodes, arthropods and other moulting
animals. Nature 387, 489–493 (1997)

20. Telford, M.J., Copley, R.R.: Animal phylogeny: fatal attraction. Curr. Biol. 15,
296–299 (2005)

21. Felsenstein, J.: Cases in which parsimony or compatibility methods will be posi-
tively misleading. Syst. Zool. 27, 401–410 (1978)

22. Reyes, A., Pesole, G., Saccone, C.: Long-branch attraction pheonomenon and the
impact of among-site rate variation on rodent phylogeny. Gene 259, 177–187 (2000)

190 J. Zheng et al.

23. Philippe, H., Lartillot, N., Brinkmann, H.: Multigene analyses of bilaterian animals
corroborate the monophyly of ecdysozoa, lophotrochozoa, and protostomia. Mol.
Biol. Evol. 22, 1246–1253 (2005)

24. Giribet, G., Distel, D.L., Polz, M., Sterrer, W., Wheeler, W.C.: Triploblastic rela-
tionships with emphasis on the acoelomates and the position of gnathostomulida,
cycliophora, plathelminthes, and chaetognatha: a combined approach of 18s rdna
sequences and morphology. Syst. Biol. 49, 539–562 (2000)

25. Peterson, K.J., Eernisse, D.J.: Animal phylogeny and the ancestry of bilaterians:
inferences from morphology and 18s rdna gene sequences. Evol. Dev. 3, 170–205
(2001)

26. Mallatt, J., Winchell, C.J.: Testing the new animal phylogeny: first use of combined
large-subunit and small-subunit rrna gene sequences to classify the protostomes.
Mol. Biol. Evol. 19, 289–301 (2002)

27. de Rosa, R., Grenier, J.K., Andreeva, T., Cook, C.E., Adoutte, A., Akam, M., Car-
roll, S.B., Balavoine, G.: Hox genes in brachiopods and priapulids and protostome
evolution. Nature 399, 772–776 (1999)

28. Manuel, M., Kruse, M., Muller, W.E., Parco, Y.L.: The comparison of beta-
thymosin homologues among metazoa supports an arthropod-nematode clade. J.
Mol. Evol. 51, 378–381 (2000)

29. Adoutte, A., Balavoine, G., Lartillot, N., Lespinet, O., Prud’homme, B., de Rosa,
R.: The new animal phylogeny: reliability and implications. Proc. Natl. Acad. Sci.
U S A 97, 4453–4456 (2000)

30. Valentine, J.W., Collins, A.G.: The significance of moulting in ecdysozoan evolu-
tion. Evol. Dev. 2, 152–156 (2000)

31. Collins, A.G., Valentine, J.W.: Defining phyla: evolutionary pathways to metazoan
body plans. Evol. Dev. 3, 432–442 (2001)

32. Telford, M.J., Budd, G.E.: The place of phylogeny and cladistics in evo-devo re-
search. Int. J. Dev. Biol. 47, 479–490 (2003)

33. Mushegian, A.R., Garey, J.R., Martin, J., Liu, L.X.: Large-scale taxonomic profil-
ing of eukaryotic model organisms: a comparison of orthologous proteins encoded
by the human, fly, nematode, and yeast genomes. Genome Res. 8, 590–598 (1998)

34. Blair, J.E., Ikeo, K., Gojobori, T., Hedges, S.B.: The evolutionary position of ne-
matodes. BMC Evol. Biol. 2(7) (2002)

35. Wolf, Y.I., Rogozin, I.B., Koonin, E.V.: Coelomata and not ecdysozoa: evidence
from genome-wide phylogenetic analysis. Genome Res. 14, 29–36 (2004)

36. Stuart, G.W., Berry, M.W.: An svd-based comparison of nine whole eukaryotic
genomes supports a coelomate rather than ecdysozoan lineage. BMC Bioinformat-
ics 5, 204 (2004)

37. Philip, G.K., Creevey, C.J., McInerney, J.O.: The opisthokonta and the ecdysozoa
may not be clades: stronger support for the grouping of plant and animal than
for animal and fungi and stronger support for the coelomata than ecdysozoa. Mol.
Biol. Evol. 22, 1175–1184 (2005)

38. Zdobnov, E.M., von Mering, C., Letunic, I., Bork, P.: Consistency of genome-based
methods in measuring metazoan evolution. FEBS Lett. 579, 3355–3361 (2005)

39. Ciccarelli, F.D., Doerks, T., von Mering, C., Creevey, C.J., Snel, B., Bork, P.:
Toward automatic reconstruction of a highly resolved tree of life. Science 311,
1283–1287 (2006)

40. Telford, M.J.: The multimeric beta-thymosin found in nematodes and arthropods
is not a synapomorphy of the ecdysozoa. Evol. Dev. 6, 90–94 (2004)

A Rigorous Analysis of the Pattern of Intron Conservation 191

41. Brinkmann, H., van der Giezen, M., Zhou, Y., de Raucourt, G.P., Philippe, H.:
An empirical assessment of long-branch attraction artefacts in deep eukaryotic
phylogenomics. Syst. Biol. 54, 743–757 (2005)

42. Dopazo, H., Dopazo, J.: Genome-scale evidence of the nematode-arthropod clade.
Genome Biol 6(5), R41 (2005)

43. Copley, R.R., Aloy, P., Russell, R.B., Telford, M.J.: Systematic searches for molec-
ular synapomorphies in model metazoan genomes give some support for ecdysozoa
after accounting for the idiosyncrasies of caenorhabditis elegans. Evol. Dev. 6,
164–169 (2004)

44. Lartillot, N., Brinkmann, H., Philippe, H.: Suppression of long-branch attraction
artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol.
Biol. Suppl. 1 7, S4 (2007)

45. Hedges, S.B.: The origin and evolution of model organisms. Nat. Rev. Genet. 3,
838–849 (2002)

46. Telford, M.J.: Animal phylogeny: back to the coelomata? Curr. Biol. 14, R274–276
(2004)

47. Jones, M., Blaxter, M.: Evolutionary biology: animal roots and shoots. Nature 434,
1076–1077 (2005)

48. Rogozin, I.B., Wolf, Y.I., Carmel, L., Koonin, E.V.: Ecdysozoan clade rejected by
genome-wide analysis of rare amino acid replacements. Mol. Biol. Evol. 24, 1080–
1090 (2007)

49. Przytycka, T.M.: An important connection between network motifs and parsimony
models. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P., Waterman, M. (eds.)
RECOMB 2006. LNCS (LNBI), vol. 3909, pp. 321–335. Springer, Heidelberg (2006)

50. Nguyen, H.D, Yoshihama, M., Kenmochi, N.: New maximum likelihood estimators
for eukaryotic intron evolution. PLoS Comput. Biol. 1(7), 79 (2005)

51. Farris, J.S.: Phylogenetic analysis under dollo’s law. Syst. Zool. 26, 77–88 (1977)
52. Rogozin, I.B., Babenko, V.N., Wolf, Y.I., Koonin, E.V.: Dollo parsimony and re-

construction of genome evolution. In: Albert, V.A. (ed.) Parsimony, Phylogeny,
and Genomics, pp. 190–200. Oxford University Press, Oxford (2005)

53. Felsenstein, J.: Inferring phylogenies from protein sequences by parsimony, dis-
tance, and likelihood methods. Methods Enzymol 266, 418–427 (1996)

54. Prager, E.M., Wilson, A.C.: Ancient origin of lactalbumin from lysozyme: analysis
of dna and amino acid sequences. J. Mol. Evol. 27, 326–335 (1988)

55. Fedorov, A., Roy, S., Fedorova, L., Gilbert, W.: Mystery of intron gain. Genome
Res. 13, 2236–2241 (2003)

56. Roy, S.W., Penny, D.: Smoke without fire: most reported cases of intron gain in
nematodes instead reflect intron losses. Mol. Biol. Evol. 23, 2259–2262 (2006)

57. Carmel, L., Wolf, Y.I., Rogozin, I.B., Koonin, E.V.: Three distinct modes of intron
dynamics in the evolution of eukaryotes. Genome Res. (in press, 2007)

58. Brinkmann, H., Philippe, H.: Archaea sister group of bacteria? indications from
tree reconstruction artifacts in ancient phylogenies. Mol. Biol. Evol. 16, 817–825
(1999)

59. Philippe, H., Germot, A., Moreira, D.: The new phylogeny of eukaryotes. Curr.
Opin. Genet. Dev. 10, 596–601 (2000)

60. Brochier, C., Philippe, H.: Phylogeny: a non-hyperthermophilic ancestor for bac-
teria. Nature 417, 244 (2002)

Author Index

Alekseyev, Max A. 1
Angibaud, Sébastien 16
Arndt, William 30

Bader, Martin 58
Bertrand, Denis 96
Bourque, Guillaume 149

Chauve, Cedric 45

Doyon, Jean-Philippe 45

El-Mabrouk, Nadia 45, 96

Fertin, Guillaume 16

Gog, Simon 58
Goodman, Daniel 69
Guo, Yuhong 83

Haussler, David 122

Koonin, Eugene V. 177

Lajoie, Mathieu 96
Li, Guoliang 110

Ma, Jian 110, 122
Miller, Webb 122

Ollikainen, Noah 69

Przytycka, Teresa M. 177

Ratan, Aakrosh 122
Rogozin, Igor B. 177
Rusu, Irena 16

Sankoff, David 162
Schuurmans, Dale 83
Sharakhov, Igor V. 136
Sharakhova, Maria V. 136
Sholley, Chris 69

Tang, Jijun 30
Thévenin, Annelyse 16

Vialette, Stéphane 16

Xia, Ai 136

Zhang, Louxin 110, 122
Zhao, Hao 149
Zheng, Chunfang 162
Zheng, Jie 177
Zhu, Qian 162

	Title Page
	Preface
	Organization
	Table of Contents
	Multi-break Rearrangements: From Circular to Linear Genomes
	Introduction
	Multi-break Rearrangements in Circular Genomes
	Multi-break Distance Between Circular Genomes
	Breakpoint Re-Use in Circular Genomes

	Rearrangements in Linear Genomes
	Rearrangement Distance Between Linear Genomes
	Breakpoint Re-Use in Linear Genomes

	References

	A Pseudo-boolean Programming Approach for Computing the Breakpoint Distance Between Two Genomes with Duplicate Genes
	Introduction
	Preliminaries
	An Exact Algorithm
	Pseudo-boolean Problem
	Maximizing the Number of Adjacencies
	Speeding-Up the Program

	Experimental Results
	Conclusion
	References

	Improving Inversion Median Computation Using Commuting Reversals and Cycle Information
	Introduction
	Backgrounds
	Genome Rearrangements
	Distance Computation
	Sorting and Commuting Reversals
	Inversion Median Problem

	Inversion Median Computation Using Commuting Reversals
	A Naive Approach
	An Improved Algorithm
	Parallel and Perpendicular Sorting Reversals
	The Final Algorithm

	Experimental Results
	Setup of Simulations
	Accuracy
	Speed
	Medians of Larger Genomes

	Discussion
	Conclusions and Future Work
	References

	Inferring a Duplication, Speciation and Loss History from a Gene Tree
	Introduction
	Duplication/Speciation History and Reconciliation
	Recognizing a DS-Tree
	Inferring Gene Losses in a Non DS-Tree
	Problem Statements
	A Heuristic for the Subtrees Insertion Problem

	Experimental Results
	Conclusion
	References

	How to Achieve an Equivalent Simple Permutation in Linear Time
	Introduction
	Preliminaries
	Creating Equivalent Simple Permutations Revisited
	The Data Structure
	The Algorithm
	References

	Baculovirus Phylogeny Based on Genome Rearrangements
	Introduction
	Phylogenomics and Genome Rearrangement
	Application to Viral Genomes
	Finding Shared Genes Presents Key Challenge
	Baculoviridae

	Materials and Methods
	Detection of Orthologous Gene Clusters
	Cluster Pruning
	Gene Order and Phylogeny
	MULGOR Software
	Using MULGOR Iteratively on Baculovirus

	Results
	Baculovirus Phylogeny of Nine Species
	Baculovirus Phylogeny of Twelve Species
	Updated Phylogeny of Thirty-two Genomes

	Discussion
	Gene Deletions and Low Sequence Homology
	Deviations from Parsimony
	Strong Gene Order Conservation vs. Lack of Shared Genes
	Improvements and Future Work
	Conclusion

	References

	Learning Gene Regulatory Networks via Globally Regularized Risk Minimization
	Introduction
	Method
	Linear Modeling
	Coping with Time Lags via Time Shifting
	Feature Selection via L1 Regularized Risk Minimization
	Regulation Sharing via Globally Regularized Risk Minimization
	Optimization Procedure

	Experiments and Results
	Experiments on Synthetic Data
	Experiments on Real Data

	Conclusions
	References

	Evolution of Tandemly Arrayed Genes in Multiple Species
	Introduction
	The Evolutionary Model
	An Inference Problem
	The Generalized Minimum-DI Problem
	A General Method Using the Median Problem
	A Branch-and-Bound Algorithm for the Median Problem

	Results
	Branch-and-Bound Efficiency
	Application on Biological Data

	Conclusion
	References

	Selecting Genomes for Reconstruction of Ancestral Genomes
	Introduction
	Parsimony Methods and Its Accuracy
	A Simple Jukes-Cantor Evolutionary Model
	Parsimony Reconstruction Method
	Reconstruction Accuracy

	More Genomes Are Not Necessarily Better
	Algorithms for Genome Selection
	Forward Greedy Algorithm
	Backward Greedy Algorithm

	Simulation Test
	A Biological Example
	Conclusion
	References

	A Heuristic Algorithm for Reconstructing Ancestral Gene Orders with Duplications
	Introduction
	Methods
	Definitions
	Species Tree, Gene Tree, and Reconciled Tree
	Reconstructing Ancestral Adjacency
	From Ancestral Adjacency to Ancestral Gene Order
	Summary

	Results
	Simulation Results
	Application to Real Data

	Discussion
	References

	Reconstructing an Inversion History in the $\it{AnophelesGambiae}$ Complex
	Introduction
	Materials and Methods
	Results
	Conclusion
	References

	Recovering True Rearrangement Events on Phylogenetic Trees
	Introduction
	Basic Concepts
	Methods and Algorithms
	A Naive Algorithm: All Versus All
	Extension: EMRAE

	Simulations
	Random Breakage Model
	Fragile Regions Model

	Result on Real Data
	Discussion
	References

	Parts of the Problem of Polyploids in Rearrangement Phylogeny
	Introduction
	Terminology and Scope

	Generation and Inference of Polyploidy
	Existing Resources
	Parts Already in Place
	The Case of Two Doubling Descendants
	Halving
	Doubling First
	Speciation First

	Simulations
	Genome Doubling in Yeast
	Conclusions
	References

	A Rigorous Analysis of the Pattern of Intron Conservation Supports the $\it{Coelomata}$ Clade of Animals
	Introduction
	Materials and Methods
	Results
	The Dependence of Intron Loss Rate in a Branch on Intron Conservation in Other Branches
	Parsimony Analysis of Conserved Introns Supports the Coelomata Topology
	Three Additional Tests to Resolve the Coelomata/Ecdysozoa Dilemma

	Discussion and Conclusions
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

